TOWN OF MIAMI LAKES, FLORIDA
 REGULAR AGENDA
 Workshop

February 11, 2020
7:30 PM
Government Center

6601 Main Street Miami Lakes, FL33014

Video stream of meetings can be viewed here:
https://pub-miamilakes.escribemeetings.com

1. CALL TO ORDER

2. MOMENT OF SILENCE

3. PLEDGE OF ALLEGIANCE

4. PUBLIC COMMENTS

All comments or questions from the attending public to the Council shall be directed to the Mayor, in a courteous tone. No person other than the Council and the person recognized by the Mayor as having the floor, shall be permitted to enter into discussion without the permission of the Mayor. To ensure the orderly conduct and efficiency of the meeting, public comments shall be limited to three (3) minutes maximum per person; however, the Mayor may authorize the extension of the aforesaid time frame, and any extension shall apply to other individuals speaking on the same subject.

No clapping, applauding, heckling, verbal outburst in support of, or in opposition to a speaker or his/her remarks shall be permitted. Should a member of the audience become unruly, or behave in any manner that disrupts the orderly and efficient conduct of the meeting, the Mayor is given the right and the authority to require such person to leave the Council Chambers.

As a courtesy to others, all electronic devices must be set to silent mode to avoid disruption of the proceedings.

Remote Public Comments: Please register with the Town Clerk from the date the agenda is released to the date before the meeting. For additional information, please

Live Remote Public Comments: Livestreamed meetings will now allow the submission of Live Remote Public Comments. If you wish to be part of the scheduled Zoom meeting, please join the meeting by clicking on the URL Link below:

Live Remote Public Comments

5. ITEMS FOR DISCUSSION OR ACTION

a. Canopy Presentation

b. Town Wide Street Light Presentation

6. ADJOURNMENT

This meeting is open to the public. A copy of this Agenda and the backup therefore, has been posted on the Town of Miami Lakes Website at miamilakes-fl.gov and is available at Town Hall, 6601 Main Street, Miami Lakes 33014. In accordance with the Americans with Disabilities Act of 1990, all persons who are disabled and who need special accommodations to participate in this meeting because of that disability should contact Town Hall at 305-364-6100 two days prior to the meeting.

Anyone wishing to appeal any decision made by the Miami Lakes Town Council with respect to any matter considered at this meeting or hearing will need a record of the proceedings and for such purpose, may need to ensure that a verbatim record of the proceedings is made which record includes the testimony and evidence upon which the appeal is to be based.

Any member of the public wishing to speak on a public hearing matter on this Agenda or under public comments for items not on this Agenda, should fill out a speaker card and provide it to the Town Clerk, prior to commencement of the meeting. Any person presenting documents to the Town Council should provide the Town Clerk with a minimum of 15 copies.

MIAMI) $)^{-2 / 2}$ LAKES Growing Beautifully

CANOPY PROTECTION WORKSHOP FEBRUARY 11, 2020

OVERVIEW

- TREE INVENTORY
- TREE MANAGEMENT PLAN
- TREE REMOVAL PERMIT PROCESS
- ENFORCEMENT AND FINES
- NEW FLORIDA LAW - "PRIVATE PROPERTY RIGHTS"
- Q \& A
- NEXT STEPS

Town of Miami Lakes Memorandum

To: \quad Honorable Mayor \& Councilmembers

From: Edward Pidermann, Town Manager
Subject: Roadway Lighting Study Workshop
Date: February 11, 2020

Recommendation:

In 2017, the Town of Miami Lakes ("Town") worked with Tanko Lighting to complete a comprehensive streetlight assessment and design to convert to high-efficiency Light Emitting Diodes (LED) streetlight fixtures from the Town's existing High-Pressure Sodium (HPS) system. The project, completed in 2018, replaced approximately 918 Town-owned streetlights throughout the Town, including standard streetlights (called "cobra heads") and decorative streetlights.

At the February 5, 2019 Regular Council Meeting, Councilmember Luis Collazo introduced a new business item titled "Supplemental Street Lighting." The purpose of this item was to have a discussion with respect to reviewing the adequacy of the current street lighting system and identify areas which could benefit from additional street lighting since the completion of the LED conversion project.

In 2019, the Town contracted the services of Wood Environment and Infrastructure Solutions, Inc. (Wood) to perform an audit of street lighting within the Town and provide recommendations to increase the performance of the street lighting system. The report was completed in December 2019 and the results are presented at this workshop.

Attachments:

Power Point Presentation - Roadway Lighting Study Workshop
Report - 2012 Roadway Lighting Systems Assessment Report
Report - 2019 Residential Roadway Lighting Systems Assessment Report

Roadway Lighting Study Workshop

February II, 2020

Link to Strategic Plan

- Strategic Priority Area 4: Environmental Sustainability
- Goal 4:Achieve Universal Environmental Sustainability in Public and Private Environments, Operations, and Infrastructure
- Objective:
- 4.2 Deploy and Diffuse LED Technology Town Wide

Streetlight Assessment History

2012

2019

Growing Beautifully

TOWN OF MIAMI LAKES ZONE LIMITS

Date	8 B	OEscaptan	Catie	\| 81		Date	\|87	0EEapme

Estimated Cost of Improvements (2012 Report)

5.1 Opinion of Probable Cost

Pay Item	Description	Unit	Unit Price	Quantity	Total Price
$522-1$	Sidewalks concrete 4"	SY	$\$ 27.00$	9000	$\$ 243,000.00$
$551-1-1$	Directional bore $<6^{\prime \prime}$	LF	$\$ 11.90$	142784	$\$ 1,699,129.60$
$715-1-12$	Lighting conductor \#6	LF	$\$ 1.11$	756704	$\$ 839,941.44$
$715-1-13$	Lighting conductor \#4	LF	$\$ 1.70$	100000	$\$ 170,000.00$
$715-2-11$	Conduit Underground	LF	$\$ 2.43$	142784	$\$ 346,965.12$
$715-516-120$	Light pole Al 20'	EA	$\$ 2,358.00$	692	$\$ 1,631,736.00$
$715-14-11$	Pull box roadside	EA	$\$ 334.00$	300	$\$ 100,200.00$
$715-14-12$	Pull box sidewalk	EA	$\$ 370.00$	392	$\$ 145,040.00$
$715-500-1$	Pole cable distribution				
	system	$\$ 419.00$	692	$\$ 289,948.00$	
$715-7-11$	Load Center	EA	$\$ 7,690.00$	16	$\$ 123,040.00$

2019 Streetlight Assessment

Typical Light Fixtures

Existing Photometric Modelling

Existing Photometric Modelling

Recommended Solutions Installation of Additional Fixtures

Lighting Calculation for:							\$0.1200	per kWh Energy Cost					
Location	ECM\#	Usage Area Type (Choose from Menu)	Pre-Retrofit Equipment			Proposed Action (Choose from Menu)	Post-Retrofit Equipment						
			Fixture Type (Choose from Menu)	$\begin{aligned} & \text { \# of } \\ & \text { Fixtures } \end{aligned}$	Ballast Code		Fixture Type (Choose from Menu)	$\begin{gathered} \# \text { of } \\ \text { Fixtures } \end{gathered}$	Ballast Code	Installed Total Cost	Sum of Total Cost per Building	Sum of Peak kW Savings	$\begin{gathered} \text { Sum of Annual } \\ \text { Energy Savings } \\ (\mathrm{kWh}) \end{gathered}$
Existing LED Street Lighting													
American Revolution 39-Watt 3000K	L-01	Night	LED	654	LED PT AR 30w	DND	LED	654	LED PT AR 39w	s			
RSW 45-Watt 3000K	L-01	Night	LED	188	LED-PA RSW 45w	DND	LED	188	LED-PA RSW 45 w	s			
Evolve LED 32W Type B	L-01	Night	Led	396	LED-PA 32w	DND	LED	398	LED-PA 32w	s			
75 W Screw-In Lamp	L-01	Night	LED	40	LED-PT 75w Scw	DND	LED	40	LED-PT 75w Scrw	s			
Proposed LED Street Lighting													
Amercan Revoution 39,Wat 3000k	L-01	Night	LED		LED PT AR 39w	Install 1L Fixture	LED	654	LED PT AR 30w	S 1,468,230			
RSWW 45-Watt 3000k	L-01	Night	LED		LED-PA RSW 45w	Install 1L Fixture	LED	188	LED-PA RSW 45 w	\$ 510.420			
Evolve LED 32W Type B	L-01	Night	LED		LED-PA 32w	Install 1L Fixture	Led	396	LED-PA 32w	\$ 1.188.200			
$7{ }^{\text {75W Screw-In Lamp }}$	L-01	Night	LED		LED-PT 75w Scw	Install 1L Fixture	LED	40	LED-PT 75w Scrw	S 88.000			
				1,278				2,556			\$3,234,850	-49.64	-217,414
				\# of Fixtures				\# of Fixtures			Sum of Total Cost per Building	Sum of Peak kW Savings	$\begin{gathered} \text { Sum of Annual } \\ \text { Energy } \\ \text { Savings }(k W h) \end{gathered}$

Recommended Solutions Replacement of Existing Fixtures

Lighting Calculation for:							\$0.1200	per kWh Energy Cost					
Town of Miami Lakes Residential Street Lighting- Option 2													
		Usage Area Type (Choose from Menu)	Pre-Retrofit Equipment			Proposed Action (Choose from Menu)	Post-Retrofit Equipment						
Location	ECM\#		Fixture Type (Choose from Menu)	$\begin{aligned} & \text { \# of } \\ & \text { Fixtures } \end{aligned}$	Ballast Code		Fixture Type (Choose from Menu)	\# of Fixtures	Ballast Code	Installed Total Cost	Sum of Total Cost per Building	Sum of Peak kW Savings	Sum of Annual Energy Savings (kWh)
Existing LED Street Lighting													
American Revolution 39-Watt 3000K	L-01	Night	LED	654	LED PT AR 39w	Replace 1L Fixture	LED	654	LED PT AR 78w	\$ 474,150			
RSW 45-Watt 3000K	L-01	Night	LED	188	LED-PA RSW 45w	Replace 1L Fixture	LED	188	LED PT AR 78w	\$ 136,300			
Evolve LED 32W Type B	L-01	Night	LED	396	LED-PA 32w	Replace 1L Fixture	LED	396	LED-PA 52w	\$ 366,300			
75 W Screw-In Lamp	L-01	Night	LED	40	LED-PT 75w Scrw	Replace 1L Fixture	LED	40	LED PT AR 125w	\$ 35,000			
				1,278				1,278			\$1,011,750	-41.63	-182,339
				$\begin{gathered} \text { \# of } \\ \text { Fixtures } \end{gathered}$				$\begin{array}{\|c\|} \hline \text { \# of } \\ \text { Fixtures } \end{array}$			Sum of Total Cost per Building	Sum of Peak kW Savings	Sum of Annual Energy Savings (kWh)

Proposed Photometric Modelling

Challenges

- Tree canopy causing shadows
- Existing fixture spacing
- Existing underground infrastructure

Recommended Streets/Areas for Initial Improvements

TOWN OF MIAMI LAKES

ROADWAY LIGHTING SYSTEMS LIGHTING REPORT

Prepared by:

8550 NW $33^{\text {rd }}$ Street, Suite 101
Doral, Florida 33122
EB\# 00003212

March 2013

TABLE OF CONTENTS

Chapter 1 - Scope and Technical Approach for Evaluating the Existing Street Lighting Systems 1
1.1 Scope of the Lighting Report 1
1.2 Basis of Calculation 1
1.3 Measurements 1
1.4 Interpretation of Results 1
1.5 Recommended Illuminance Values 2
Chapter 2 - Estimate of the Existing Average Illuminance Values and Measured Illuminance Values 3
2.1 Zone Numbers and Pole ID References. 3
2.2 Streets located in Zone No. 1 (North of Miami Lakes Drive from NW 67 Avenue to Palmetto Expressway) (excluding Bull Run and streets on the east side of Bull Run) 3
2.3 Streets located in Zone No. 2 (from Miami Lakes Drive to Palmetto Expressway and from NW $67^{\text {th }}$ Avenue to NW 57 Avenue) 5
2.4 Streets located in zone \#3 (from Miami Lakes Drive to NW $138^{\text {th }}$ Street from NW 57 Avenue to NW 67 Avenue) 6
2.5 Streets located in Zone No. 4 (South of Miami Lakes Drive from NW 67 Avenue to Palmetto Expressway) 7
2.6 Streets located in Zone No. 5 (South of Miami Lakes Drive from Palmetto Expressway to NW 87 Avenue) 8
2.7 Streets located in Zone No. 6 (From NW $87^{\text {th }}$ Avenue to I-75 \& from NW $138^{\text {th }}$ Street to NW $154^{\text {th }}$ Street) \& streets located in Zones No. 7 \& No. 8 (From NW $154^{\text {th }}$ Street to NW $170^{\text {th }}$ Street \& from Palmetto Expressway to l-75 8
Chapter 3 - Physical Conditions of the Existing Lighting System 10
3.1 Inspections 10
3.2 As-built plans 10
Chapter 4 - Recommendations 11
4.1 Recommendations 11
Chapter 5 - Cost of Improvements of the Street Lighting Systems 12
5.1 Opinion of Probable Cost 12
Chapter 6 - GIS Mapping. 13
6.1 General 13
6.2 Light Pole Shapefile 13
6.2 Basemap Shapefile 14

CHAPTER 1 - SCOPE AND TECHNICAL APPROACH FOR EVALUATING THE EXISTING STREET LIGHTING SYSTEMS

1.1 Scope of the Lighting Report

The scope of this report is limited to a general evaluation of the existing street lighting systems in the Town of Miami Lakes. The report includes estimated and measured values of the illuminance on selected streets which are representative of most of the streets in the Town, a general evaluation of the physical conditions of the existing light poles, luminaires \& circuits and an opinion of probable cost for improvements of the street lighting systems. This report also includes the description of the GIS shapefile created for the Town of Miami Lakes, which was developed to be used in conjunction with the Town of Miami Lakes Asset identification System, which was provided as a separate document.

1.2 Basis of Calculation

The estimated values are calculated using the typical photometric curves for FPL luminaires with high pressure sodium (HPS) lamps of 100 W (9500 lumens), 150 W (16000 lumens), 200 W (22000 lumens) or 400 W (51000 lumens). Information about the wattage of the existing lamps was provided by the Town of Miami Lakes. The estimated values do not take into account the interference to the light from the existing trees located on swales or residential properties.

Typical sections of streets and pole spacing shown in this report are intended to be representative of most of the streets in order to determine if the existing lighting systems are providing the current recommended average illuminance values for the streets and sidewalks.

1.3 Measurements

Measured values shown in this report were taken to evaluate the difference between the estimated and measured values. The values were taken along the center line of the selected streets to minimize interference from existing trees.

1.4 Interpretation of Results

Differences between the estimated average values and current values of illuminance and uniformity ratios are expected, since the actual luminaires could have different photometric curves and also because the arm length and mounting height are estimated; but the average illuminance values will depend mostly on the total lumens provided by the luminaires.

Where the estimated and measured values in one street coincide and are below the current recommended values shown in Table A in Section 1.5, improvements to the lighting system are recommended for all streets with similar sections and the same pole layout, luminaires and lamps. In other cases, additional measurement and analysis, which are not part of this report's scope, will be required.

In some streets ADA obtained measured values higher than the estimated calculated values. This indicated that the actual lamp wattage was higher than the lamp wattage used in the calculations. For example, it would be expected that measured values for a 150 Watts HPS lamps to be 1.68 times greater than the average illuminance for a 100 Watts HPS lamps (16000 lumens / 9500 lumens). For this reason, the actual wattage of the existing lamps should be verified before following recommendations for improvements of the existing lighting systems.

1.5 Recommended Illuminance Values

Table "A", from the AASHTO Roadway Lighting Design Guide, depicts the current recommended average illuminance values for streets and sidewalks:

Table A - Current Recommended Average Illuminance Values for Streets and Sidewalks

	AVERAGE MAINTAINED ILLUMINANCE FOOT CANDLE	UNIFORMITY RATION AVERAGE/MINIMUM
Local Streets	0.8	6
Commercial Areas	0.7	6
Intermediate	0.4	6
Residential Areas	1.4	4
Minor Arterials	1.0	6
Commercial Areas	0.7	4
Intermediate	1.3	3
Residential Areas	0.8	4
Sidewalks	0.4	6
Commercial Areas		
Intermediate		

Note: For sidewalks in residential areas, when pedestrian security is not a concern, IESNA recommends a minimum average illuminance of 0.2 fc with a uniformity ratio of 5 .

CHAPTER 2 - ESTIMATE OF THE EXISTING AVERAGE ILLUMINANCE VALUES AND MEASURED ILLUMINANCE VALUES

2.1 Zone Numbers and Pole ID References

The zone numbers used in this report refer to the map shown below and also provided on Appendix "B", which shows the Town of Miami Lakes divided into eight zones. This map was developed as part of the Town of Miami Lakes Asset Identification System.

Pole identification numbers refer to the GIS files provided with this report, which include a complete map of the Town with the location and identification number of each light pole.

2.2 Streets located in Zone No. 1 (North of Miami Lakes Drive from NW 67 Avenue to Palmetto Expressway) (excluding Bull Run and streets on the east side of Bull Run)

The typical section for these segments of streets consists of a 50 foot right of way, 20 foot wide two-lane roadway with 10 foot swales and 5 foot sidewalk along both sides.

The lighting systems for most of the streets in Zone 1 consists of cobra head luminaires mounted 30 feet high, on standard aluminum light poles. Poles are located along one side of the roadway. Pole arms are 12 feet long and pole setbacks are 10 feet from the edge of pavement. Pole spacing varies between 200 and 300 feet. The luminaires are equipped with 100 W high pressure sodium lamps (HPS) lamps.

The estimated average maintained illuminance segments for streets with cobra head luminaires spaced at 300 feet with 100 W HPS lamps is 0.32 fc with a uniformity ratio of 5.3 . The estimated average illuminance on the sidewalks is 0.12 FC with uniformity ratio of 2.4. For areas where poles are spaced 200 feet apart,
the estimated average illuminance on the streets is 0.5 fc , and the estimated average illumimamce on the sidewalks is 0.2 fc . Further analysis, will be required to evaluate the need for improvements in the lighting system for specific segments of streets in this zone.

Estimated and measured values along Lochness Drive center line between two consecutive poles are shown below. The measurements were taken between two poles spaced 296 feet apart. For this condition the estimated average illuminance value is 0.31 fc , but the measured values are very high compared to the estimated values, which indicate that in this case lamp wattage verification is required. If the luminaires in this zone are equipped with lamps of more wattage, general improvements in the lighting system will not be required.

On NW 166 terrace the luminaires are equipped with 150 W HPS lamps spaced about 200 feet, no improvements are recommended for this street.

On Kingsmoor Way the light poles are equipped with open bottom luminaires at 25 feet high with100W HPS lamps. Poles in this street are located along one side of the street and spaced at 200 feet. Pole set back is 10 feet from edge of pavement. Pole arms are 12 feet long.

The estimated average illuminance value on Kingsmoor Way is 0.38 fc with a uniformity ratio of 5.4 . The estimated average illuminance on the sidewalk located on the luminaires side is 0.24 fc with a uniformity ratio of 6 and on the opposite sidewalk the is 0.15 fc with a uniformity ratio of 2 . Since there are many obstacles to the existing street lights in this street because of the existing trees, the actual illuminance on most segments of the sidewalks is expected to be zero.

Estimated and measured values along Kingsmoor Way center line between two consecutive poles are shown below. The measurements were taken between two poles spaced 206 feet. For this condition the estimated average illuminance values without obstacles is 0.37 fc with a uniformity ratio of 6 , but because of the interference to the light from the trees the measured values are below the estimated values.

If there are security concerns in this area, improvements on the illuminance mostly on the sidewalks along Kingsmoor Way will be required.

The Fairway Drive typical section is different from typical streets, it consists of a 70 foot right of way, 24 -foot wide two-lane roadway with 18 -foot wide swale and 5 feet sidewalk along both sides. Luminaires on Fairway Drive are cobra head with 150 HPS lamps. Pole spacing varies from 200 feet to 400 feet. The estimated average illuminance value on the segments of Fairway Drive where standard concrete light poles are spaced 400 feet is 0.32 fc with a uniformity ratio of 16 . The actual average illuminance value is lower in most cases because of the interference from the existing trees to the street lights. Improvements are recommended for segments of this street where poles are spaced at 400 feet.

2.3 Streets located in Zone No. 2 (from Miami Lakes Drive to Palmetto Expressway and from NW 67th Avenue to NW 57 Avenue)

The typical section for streets located between North Miami Lakeway and NW $57^{\text {th }}$ Avenue from 163th street to Palmetto Expressway (except NW 64 Avenue) consists of a 60 feet right of way, 56 feet wide two-lane roadway without sidewalks.

The lighting system for these streets consists of cobra head luminaires at 30 feet high, mounted on standard concrete light poles. Pole arm is 10 feet long. Pole setback form edge of pavement is about 5 feet. The luminaires are equipped with 150 W HPS lamps. Poles are located along one side of the street with average spacing of 250 feet. The estimated average maintained illuminance for these streets is 0.4 fc with a uniformity ratio of 5 . No improvements of the lighting system will be required.

The typical section for the segment of NW $64^{\text {th }}$ Avenue consists of a 70 foot right of way with a 26 feet wide two-lane roadway with a 6 foot parking lane on the west side, swales and 5 foot sidewalks along both sides.

The lighting system for this street consists of open bottom luminaires at 25 feet high, mounted on standard concrete light poles. Pole arm is 10 feet long. Pole setback form edge of pavement is about 10 feet. The luminaires are equipped with 100 W HPS lamps. Poles are located along the west side of the street with average spacing of 230 feet. The estimated average maintained illuminance for these streets 0.28 fc with a uniformity ratio of 6 . Improvements of the lighting system for this street segment are recommended.

The typical section for streets located between North Miami Lakeway and NW $57^{\text {th }}$ Avenue from Miami Lakes Drive to NW $159^{\text {th }}$ Street consists of a 50 foot right of way, 28 feet to 30 feet wide two-lane roadway, with swales and with or without sidewalks. The lighting system for these streets consists of open bottom luminaires at 25 feet high, mounted on standard aluminum light poles. Pole arm is 10 feet long. Pole setback from edge of pavement is about 6 feet. The luminaires are equipped with 100 W HPS lamps. Poles are located along one side of the streets with average spacing of 300 feet. The estimated average maintained illuminance for these streets varies from 0.21 fc with a uniformity ratio of 10 . Improvements of the lighting system for these streets are recommended.

The typical section for streets located between North Miami Lakeway and Eagle Nest Lane consists of a 50 foot right of way with a 18 to 20 feet wide two-lane roadway, 10 to 12 foot swales and 5 foot sidewalks along both sides. The lighting system for these streets consists of open bottom luminaires at 25 feet high, mounted on light poles. Pole arm is 10 feet long. Pole setback is 10 feet from edge of pavement. The luminaires are equipped with 100 W HPS lamps. Poles are located along one side of the streets with average spacing of 300 feet.

The estimated average maintained illuminance for these streets is 0.25 fc with a uniformity ratio of 13 . Average illuminance on the sidewalks located on the luminaires side is 0.2 fc and average illuminance on the sidewalks located on the opposite side of the luminaires is below 0.1 fc . Improvements of the lighting system for these streets are recommended.

2.4 Streets located in zone \#3 (from Miami Lakes Drive to NW 138 ${ }^{\text {th }}$ Street from NW 57 Avenue to NW 67 Avenue)

The typical section for streets located between Miami Lakes Drive and NW $138^{\text {th }}$ Street from NW 60 Avenue to NW 67 Avenue consists of right of way of 50 feet, with a 20 feet wide two-lane roadway with 10 foot swales and 5 foot sidewalks along both sides.

The lighting system for most of the streets consists of open bottom luminaires 25 feet high, mounted on standard concrete and aluminum light poles or utility poles with average spacing of 300 feet. Pole arm is 10 feet long. Pole setback is 10 feet from edge of pavement. The luminaires are equipped with 100 W HPS lamps.

The estimated average maintained illuminance for streets with right of way of 50 feet and 100 HPS lamps is 0.25 fc with a uniformity ratio of 13 . Average illuminance on the sidewalks located along the luminaires side is 0.2 fc and average illuminance on the sidewalks located on the opposite side of the luminaires is below 0.1 fc . Improvements of the lighting system for these streets are recommended.

Estimated and measured values along Lake Patricia center line between two consecutive poles are shown below. The measurements were taken between two poles spaced 259 feet apart. For this condition the estimated average illuminance values is 0.29 fc .

The typical section of Miami Lakeway South in this zone consists of an 80 foot right of way, 22 feet wide two way roadway with an 18 feet swale and 5 feet sidewalk along southbound side and variable swale with average widths of 30 ' and 5 foot sidewalks on the northbound side. Poles on Miami Lakeway South are spaced from 200 to 350 feet. The average iluminance along Miami Lakeway in this zone is estimated to be below the values shown above for typical streets, therefore. Improvements in the lighting system are recommended.

The typical section for NW 57th Court, NW 58th Avenue, NW 58th Court, NW 59th Avenue, NW 60th Avenue, between NW $138{ }^{\text {th }}$ Street and NW 142th Street consists of a 50 foot right of way, 28 to 30 foot wide two-lane roadway, with swales and without sidewalks. The lighting system consists of open bottom luminaires mounted on standard concrete and aluminum light poles or utility poles. Pole arm is about 10 feet long. Pole setback is 14 feet. The luminaires are equipped with 100 W HPS lamps. Poles are located along one side of the street. The average spacing between poles is 270 feet.

The estimated average maintained illuminance for these streets is 0.2 fc with a uniformity ratio of 8 . The actual average illuminance value is lower in most cases because of the interference to the light from the existing trees. Improvements of the lighting system for these streets are recommended.

Estimated and measured values along NW 57 Court center line between two consecutive poles are shown below. The measurements were taken between two poles spaced only 166 feet. For this condition the estimated average illuminance values is 0.36 fc .

2.5 Streets located in Zone No. 4 (South of Miami Lakes Drive from NW 67

Avenue to Palmetto Expressway)
The typical section for these segments of streets consists of a 50 foot right of way, 20 foot wide two-lane road with 10 foot swales and 5 foot sidewalks along both sides.

The lighting system for most of the streets consists of open bottom luminaires 25 feet high, mounted on standard aluminum light poles or utility poles spaced at 300 feet. Pole arm is about 10 feet long. Pole setback is 10 feet from edge of pavement. The luminaires are equipped with 100 W HPS lamps, except that some poles are equipped with 200 W HPS lamps.

The estimated average maintained illuminance for the streets with open bottom luminaires with 100W HPS lamps, is 0.25 fc with a uniformity ratio of 13 . The average illuminance on the sidewalks located along the luminaires side is 0.2 fc and the average illuminance on the sidewalks located on the opposite side of the luminaires is below 0.1 fc .Improvements of the lighting system for these streets are recommended.

Estimated and measured values along Palmetto Palm Avenue center line between two consecutive poles are shown below. The measurements were taken between two poles spaced 322 feet apart. For this condition the estimated average illuminance values is 0.23 fc .

The lighting system for some other streets in this zone consists of light poles with contemporary post top luminaires at an estimate height of 18 feet, located along both sides of the street on some segments and along one side of the street in other segments of the street. The estimated average maintained illuminance for the streets with top mounted luminaires is 0.2 fc with a uniformity ratio of 4 .The actual average illuminance values are lower in most cases because of the interference to the light from the existing
trees. Improvements of the lighting system for these streets are recommended.
Miami Lakeway in this zone has a 70 foot right of way. The section of this street consists of a 24 feet wide two way roadway with an 18 foots swales and 5 foot sidewalks along both sides. Poles on Miami Lakeway are spaced from 200 to 300 feet. The average iluminance along this segment of Miami Lakeway is estimated to be below the values shown above for typical streets. Improvements of the lighting system for this street are recommended.

2.6 Streets located in Zone No. 5 (South of Miami Lakes Drive from Palmetto Expressway to NW 87 Avenue)

The typical section for these segments of streets consists of a 50 foot right of way, 20 feet wide two-lane roadway with a 10 feet swale and 5 feet sidewalk at both sides, except Balgowan Road and Commerce Way. The lighting system for typical streets consists of open bottom luminaires 25 feet high, mounted on standard aluminum light poles or utility poles. Pole arm is 10 feet long. Pole setback is 10 feet from edge of pavement. The luminaires are equipped with 100 W HPS lamps. Poles are located along one side of the streets with average spacing of 300 feet.

The estimated average maintained illuminance for typical streets is 0.25 fc with a uniformity ratio of 13 . Average illuminance on the sidewalks located on the the luminaires side is 0.2 fc and average illuminance on the sidewalks located on the opposite side of the luminaires is below 0.1 fc . Improvements of the lighting system for these streets are recommended.

Balgowan Road section consists of a 60 foot right of way, 36 feet two way roadway with a 7 feet wide swale and 5 feet sidewalk at both sides. The lighting system for Balgowang Road consists of open bottom luminaires 25 feet high, mounted on standard aluminum light poles or utility poles along one side of the street. Pole arm is about 10 feet long. Pole setback is 6 feet and pole spacing is 230 feet. The luminaires are equipped with 100 W high pressure sodium lamps (HPS) lamps. The estimated average maintained illuminance for Balgowan road is 0.26 fc with a uniformity ratio of 5 Average illuminance on the sidewalks located on the the luminaires side is 0.25 fc with a uniformity ratio of 5 and average illuminance on the sidewalks located on the opposite side of the luminaires is below 0.1 fc . Improvements of the lighting system for these streets are recommended.

Commerce Way has a standard lighting system with cobra head luminaires at both sides of the street from NW 82 Avenue to NW 87 Avenue and open bottom luminaires on one side of the street from NW 82 Avenue to the East. Luminaires are equipped with 150 W HPS lamps

The estimated average illuminance value on both segments of Commerce Way are 1.45 FC with a uniformity ratio of 2.3 in the segment with light poles located at both sides of the street and 0.69 FC with a uniformity ratio of 4 in the segment of the street with light poles located along one side of the street. No Improvements are required in the lighting system for these streets

2.7 Streets located in Zone No. 6 (From NW 87th Avenue to I-75 \& from NW $138^{\text {th }}$ Street to NW 154 ${ }^{\text {th }}$ Street) \& streets located in Zones No. 7 \& No. 8 (From NW 154 ${ }^{\text {th }}$ Street to NW 170 ${ }^{\text {th }}$ Street $\&$ from Palmetto Expressway to I-75

The typical section for these segments of streets consists of a 50 foot right of way, 20 to 23 foot wide twolane roadway, with an 8.5 to 10 foot swales and 5 feet sidewalks along both sides.

The lighting system for most of the streets consists of traditional post top luminaires mounted on decorative
light poles at 17 feet high. Pole setback is 8 feet. The luminaires are equipped with 100 W HPS lamps. Poles are located along both sides of the street spaced from 300 feet to 400 feet along each side. Some streets are provided with open bottom luminaires mounted at 25 feet on decorative light poles spaced 120 feet apart on one side.

The estimated average maintained illuminance for streets with contemporary post top luminaires varies from 0.25 fc with a uniformity ratio of 3 to 0.21 fc with a uniformity ratio of 6 . The estimated average illuminance on the sidewalks is 0.2 fc with a uniformity ratio of 10 .
The actual average illuminance values are lower in most cases because of the interference from the existing trees.

We recommend verification of the actual wattage of the luminaires and the installation of luminaires equipped with 150 HPS lamps on each light pole, which will provide the required average illuminance value for most of these streets. (The capacity of the existing circuits and the conditions of the existing light poles should be evaluated before the replacement of the luminaires or lamps).

Estimated and measured values along NW $146^{\text {th }}$ Terrace center line between two consecutive poles are shown below. Poles have open bottom luminaires about 25 feet high. The measurements were taken between two poles spaced at 219 feet. For this condition the estimated average illuminance values is 0.34 fc with a uniformity ratio of 5.7

Estimated and measured values along NW $86{ }^{\text {th }}$ Court center line between two consecutive poles are shown below. Poles have top mounted traditional luminaires about 15 feet high. In this case one pole has a 100 W HPS lamp and the other has a 150 Watt HPS lamp. The measurements were taken between two poles spaced at 153 feet. For this condition the estimated average illuminance values is 0.29 fc with uniformity ratio of 4.8. Improvement of the lighting system for this street is recommended.

CHAPTER 3 - PHYSICAL CONDITIONS OF THE EXISTING LIGHTING SYSTEM

3.1 Inspections

A visual inspection of the existing light poles was carried out to check their general physical conditions.
Photos of damaged poles and luminaires are shown on Appendix "A". Hand hole covers are missing for some poles and there are broken luminaires. There is also a pole located at 6725 Kingsmore Way that was hit by a car and it's in bad condition.

Along Jacaranda Lane, Laurel Lane and Holly Road (See Appendix "A") there are some areas where the original swales have been paved in front of the properties. As a result the existing light poles located in these areas are now exposed to vehicular damage. There is also a pole on Laurel Lane located inside the residential property. Luminaires in these streets are post top with 100 W HPS lamps.

Based on information received from the maintenance staff, most of the light poles are not connected to load centers, instead they are connected to the closest utility pole or resident meter can. Most of the light poles don't have ground pull boxes.

3.2 As-built plans

There is no documented information (as-built plans) which would indicate if the existing lighting systems meet current design standards for grounding and circuit protection.

CHAPTER 4 - RECOMMENDATIONS

4.1 Recommendations

1 It is recommended that hand hole covers be replaced for all poles with missing hand hole covers.
2 Broken luminaires should be repaired or replaced.
3 A program for improving the lighting systems should be developed. This program should include the design of new lighting circuits or the design of complete new lighting systems according to the conditions of the existing street lighting system on each street. Each light pole (new or existing to remain) will be provided with a ground pull box and a cable distribution system. Each street will be provided with a lighting circuit connected to a load center.

4 A program for trimming trees that obstruct existing lights should be established.
5 Improvements to the lighting along the sidewalks and at intersections should be evaluated if there are areas where pedestrian or driver security is a concern.

6 Lighting improvements are recommended on Jacaranda Lane, Laurel Lane, and Holly Road where some of the existing light poles are exposed to vehicular damage. New lighting systems per current standards should be provided for these streets.

7 Provide new lighting systems for the streets summarized below, where the existing lighting systems do not provide the required illuminance values and uniformity ratios shown in Table A, as indicated in this report.

- Fairway Drive
- NW $64^{\text {th }}$ Avenue
- Streets located between North Miami Lakeway and NW 57 ${ }^{\text {th }}$ Avenue from Miami Lakes Drive to NW $159^{\text {th }}$
- Streets located between North Miami Lakeway and Eagle Nest Lane
- Streets located between Miami Lakes Drive and NW 138 ${ }^{\text {th }}$ Street from NW 60 Avenue to NW 67 Avenue
- NW 57th Court, NW 58th Avenue, NW 58th Court, NW 59th Avenue, NW 60th Avenue, between NW 138 ${ }^{\text {th }}$ Street and NW 142th Street
- Streets located in Zone No. 4 (South of Miami Lakes Drive from NW 67 Avenue to Palmetto Expressway).
- Streets located in Zone No. 5 (South of Miami Lakes Drive from Palmetto Expressway to NW 87 Avenue), except Commerce Way

8 Verify the actual lamp wattage of the existing light poles located in Zones \#6 and \#7 and coordinate with FPL for the improvement of the existing lighting systems to meet the current design criteria and standards.

CHAPTER 5 - COST OF IMPROVEMENTS OF THE STREET LIGHTING SYSTEMS

5.1 Opinion of Probable Cost

Pay Item	Description	Unit	Unit Price	Quantity	Total Price
$522-1$	Sidewalks concrete 4"	SY	$\$ 27.00$	9000	$\$ 243,000.00$
$551-1-1$	Directional bore <6"	LF	$\$ 11.90$	142784	$\$ 1,699,129.60$
$715-1-12$	Lighting conductor \#6	LF	$\$ 1.11$	756704	$\$ 839,941.44$
$715-1-13$	Lighting conductor \#4	LF	$\$ 1.70$	100000	$\$ 170,000.00$
$715-2-11$	Conduit Underground	LF	$\$ 2.43$	142784	$\$ 346,965.12$
$715-516-120$	Light pole Al 20'	EA	$\$ 2,358.00$	692	$\$ 1,631,736.00$
$715-14-11$	Pull box roadside	EA	$\$ 334.00$	300	$\$ 100,200.00$
$715-14-12$	Pull box sidewalk	EA	$\$ 370.00$	392	$\$ 145,040.00$
$715-500-1$	Pole cable distribution				
	system	EA	$\$ 419.00$	692	$\$ 289,948.00$
$715-7-11$	Load Center	EA	$\$ 7,690.00$	16	$\$ 123,040.00$

Assumptions:

1 The quantities are calculated only for poles owned by the Town of Miami Lakes which are located in areas where illumination improvements are recommended.

2 Cost of directional bore includes the conduit.
3 Each new or existing light pole will be provided with a ground pull box and cable distribution system.
4 New conduits and circuits will be provided for all poles (new or existing) along both sides of each street.
5 An estimate of 16 new load centers is included (three to four load centers per zone).
6 An estimate of 692 light poles for replacing and supplementing the existing lighting systems is included.
7 This opinion of probable cost does not include the cost of improvements of the lighting systems owned by FPL and the design fee for the Town's lighting systems recommended improvements.

CHAPTER 6 - GIS MAPPING

6.1 General

Two ESRI based GIS shapefiles were prepared by ADA and provided to the Town of Miami Lakes. These shapefiles represented the location of light poles within the Town and a basemap delineating the estimated limits of roadway edge of pavement (EOP), sidewalks, waterways, and property limits throughout the Town.

6.2 Light Pole Shapefile

The light pole shapefile (ML_stlights.shp) was developed using a shapefile provided by the Town. This shapefile contained the estimated location of existing light poles and identified each light pole with one of three different classifications. This classification system used ' E ', ' F ', and ' R ' identifies depending on the service provided by FPL. The nomenclature was as follows:

- 'F' (Full) is given to all poles owned by FP\&L
- 'R' (Re-Lamp) is given to all poles owned by the town, but with the lamps maintained by FPL
- 'E' (Energy) is given to all poles owned by the town which are only energized by FP\&L.

The first step in the light poles shapefile development process involved manually adjusting the location of all light poles with an ' R ' designation using high resolution aerial imagery available from the County - light poles with an ' E ' or ' F ' designation were not a part of this survey. Once the location of these poles were adjusted, the coordinates were updated in the shapefile attribute table. The attribute table containing each points spatial coordinate was then converted into an excel file in order to import the points into AutoCAD where additional edits concerning the inventory process were performed. The light poles were renumbered based on load center zone locations, circuit numbers, and light pole zone locations. This information was also carried back to into the GIS shapefile attribute table.

The light pole shapefile contains eleven separate fields containing pertinent data populated through this inventory. The fields are described as follows given the field names from the GIS shapefile:

- FID - A unique identifier automatically populated by ArcMap.
- Shape - Field automatically populated by ArcMap.
- LABELS - A unique ID number for each light pole.
- ADDRESS - The address of the nearest lot to the light pole location. Since the street in the lot address in many cases is not based on the street where the pole is located, the field $P_{\text {_ street }}$ should be checked first.
- COMPONENT - Describes the type of lamp and wattage.
- OWNED_BY- Defines the ownership of the light pole (i.e. FP\&L, Town of Miami Lakes).
- LAT - The latitudinal coordinate of the light pole
- LONG - The longitudinal coordinate of the light pole
- MARK - Original pole classification as defined in the original shapefile provided by the Town ('R', 'E' or 'F')
- TAG - Pole Identification Tag. By default the pole identification tag was generated using the 'MARK' and 'LABELS' fields, until the field was subsequently updated with a tag number based on the load center name and circuit number (See Town of Miami Lakes Street Lighting Assets Identification System).
- P_STREET - The street where the pole is located.
- P_REF - Reference to the pole location along the street.

6.2 Basemap Shapefile

The basemap shapefile (ML_basemap.shp) was developed using the Miami-Dade County Property Appraiser shapefile as a starting point in the delineation process. The County shapefile was imported into CAD and used as an initial base layer for visually identifying the relative location of property limits. High resolution aerial imagery, available through the County, was also used in the delineation process in order to identify other pertinent features. Using these two items, the relative location of roadways, sidewalks, and waterways throughout the Town.

The basemap shapefile contains seven separate fields containing information developed during the delineation process or derived from the Miami-Dade County Property Appraiser shapefile. The fields are described as follows given the field names from the GIS shapefile:

- FID - A unique identifier automatically populated by ArcMap.
- Shape - Field automatically populated by ArcMap.
- Layer - The type of entity delineated which includes:
- EOP - Edge of pavement for roadways.
- Property Line - Physical limits of residential, commercial, or public/governmental properties.
- Sidewalk - Defined sidewalk areas.
- Future Sidewalk - Areas adjacent to existing sidewalks that may be defined as the future location of sidewalks.
- Sod - Visibly sodded areas.
- Water - Bodies of water such as canals, lakes, or ponds.
- Area_SqFt - The area of the delineated entity in square feet as calculated in GIS.
- FOLIO - The Miami-Dade County folio number of the property delineated. Only defined for properties and not water, EOP, sod, and sidewalks.
- ZIP_CODE - The zip code of the property delineated. Only defined for properties and not water, EOP, sod, and sidewalks.
- Address - The address of the property delineated. Only defined for properties and not water, EOP, sod, and sidewalks.

It should be noted that the shapefiles developed for this project are intended for inventory purposes only and do not accurately represent the legal limits of the entities delineated. These shapefiles do not take the place of field surveys by a licensed surveyor and cannot be used to determine official right-of-way limits, proof of ownership, nor can it be used for any other purposes than those intended by the Town.

TOWN OF MIAMI LAKES

Roadway Lighting Systems

Lighting Report Appendix A Photos

Town of Miami Lakes, FL

Prepared by:

8550 N.W. 33rd Street . Suite 101
Doral, Florida 33122
EB \# 00003212
March 2013

For pole identification numbers refer to the GIS files provided with this report, which include a complete map of the town with the location and identification number of each light pole.

R-741 - Big Cypress Drive

R-745 - Big Cypress Drive

R-877(a) - Big Cypress Drive

R-877 (b) - Big Cypress Drive

R-71(b) - Lake Success PL

R-443 (a) - Candle Wood

R-443 (b) - Candle Wood

R-656 (a) - Fitzpatric RD

R-768 (a) - Miami Lakeway South

F-1648a - NW $159^{\text {th }}$ Terrace

R-106 - Lake Patricia Drive

R-1797a - Kingsmoor Way

R-1246 - Pent PL

R-1797b - Kingsmoor Way

F-2826(a) - Sabal Drive

F-2826 (b) - Sabal Drive

F-2718(a) - NW $168^{\text {th }}$ LN

R-924 - Holly Road

R-716- Jacaranda Lane

R-939- Laurel Lane

TOWN OF MIAMI LAKES

Roadway Lighting Systems

Lighting Report Appendix B Zone Map

Town of Miami Lakes, FL

Prepared by:

8550 N.W. 33rd Street . Suite 101
Doral, Florida 33122
EB \# 00003212
March 2013

 \square

wood.

Town of Miami Lakes Residential Roadway Lighting Systems

Prepared for:
Town of Miami Lakes

Prepared by:
Wood Environment \& Infrastructure Solutions, Inc.
404 SW 140 ${ }^{\text {th }}$ Terrace
Gainesville, FL 32669

October 2019

Table of Contents

Executive Summary

Section 1.0 Scope and Technical Approach
1.1 Scope of Lighting Assessment
1.2 Recommended Illuminance Values

Section 2.0 Roadway Illuminance Values and Issues
2.1 Residential Roadway Fixture Types
2.2 Town Zone Numbers
2.3 Street Trees and Their Impact on Roadway Lighting Conditions
2.4 Zones 6, 7, and 8 - American Revolution Pole-Top 39-watt Fixture
2.5 Zone 6 - RSW Pole-Arm 45-watt Fixture
2.6 Zones 1 through 5 - Evolve Pole-Arm 32-watt Fixture
2.7 Zone 4 - Pole-Top 75-watt Screw in Lamp

Section 3.0 Recommendations

Appendix A Photographs
Appendix B Zone Map
Appendix C Existing Photometric Modelling
Appendix D Recommended Solutions
Appendix E Cutsheets

List of Acronyms

\%	percent
fc	foot-candle
HID	high-intensity discharge
kW	kilowatt
kWh	kilowatts per hour
LED	light emitting diode
NA	not applicable
sq ft	square feet

Executive Summary

Wood Environmental \& Infrastructure Solutions, Inc. (Wood) performed a roadway lighting assessment for the Town of Miami Lakes, Florida. Construction cost estimates and changes in energy usage are based on experience from similar projects. Results are expected to be accurate within $+/-30 \%$. This report presents the findings of Wood's onsite roadway lighting assessment, results of photometric modelling of residential roadway fixtures and recommended solutions to correct lighting deficiencies.

Wood's assessment of the Town of Miami Lake's roadway lighting system found areas of low-light levels throughout their residentials areas. These low light levels can be attributed to the following causes:

- Insufficient maintenance of the town's tree canopy is causing significant shadows throughout its residential neighbourhoods. Fixtures are often located above trees, inside the tree canopy or behind trees which greatly decreases the ability of the lighting to reach the roadway and sidewalk as intended.
- Photometric modelling and field light level measurements show that even without the tree canopy the desired light levels would not be reached by the existing fixtures. The spacing of the existing fixtures is too great to meet the recommended light level of 0.4 -foot candle (fc).

Wood presents two exterior lighting upgrade options in Section 3 of this report. Option 1 involves installing new light poles and fixtures to meet recommended light levels and would cost an estimated $\$ 3.2 \mathrm{M}$. Option 2 involves replacing fixtures on existing poles with higher water fixtures. This option would increase light levels close to recommended light levels and would cost an estimated \$1.0M.

Section 1.0 Scope and Technical Approach

1.1 Scope of Lighting Assessment

The scope of work for the lighting assessment included the following tasks:

Task 1 - Onsite assessment of the roadway lighting systems. A two-person team gathered the necessary onsite lighting details. Information gathered will include verification of LED upgrades, measurement of representative street light levels, and photographs. The onsite visit to assess roadway lighting conditions was performed on August 20-21, 2019.

Task 2 - Photometric study and drawings. Photometric modelling of representative roadway lighting will be developed to presented in the report and show areas of deficient light levels. Photometric modelling will be used to develop recommendations to correct deficiencies.

Task 3 - Roadway Lighting System Assessment Report. This report includes an inventory of new LED fixtures installed by FPL, list of deficient areas, recommendations for new LED fixtures in areas which are significantly under- or over-lit, and previously deficient areas that have improved with the LED installation. The report will be prepared based on available information and include a summary of observations, analysis, conclusions, photo documentation, recommended products cut-sheets, and cost estimates.

1.2 Recommended Illuminance Values

Table 1 presents recommend illuminance levels from the American Association of State Highway and Transportation Officials (AASHTO) Roadway Lighting Design Guide used in the Roadway Lighting Report prepared by ADA Engineering for the Town of Miami Lakes in 2012.

Table 1: Recommended Illuminance Values

Local Streets	Average Maintained Illuminance (fc)	Max Uniform Ratio (Average/Minimum)
Commercial Areas	0.8	6 to 1
Intermediate	0.7	6 to 1
Residential Areas	0.4	6 to 1
Minor Arterials		
Commercial Areas	1.4	4 to 1
Intermediate	1.0	6 to 1
Residential Areas	0.7	4 to 1
Sidewalks		
Commercial Areas	1.3	3 to 1
Intermediate	0.8	4 to 1
Residential Areas	0.4	6 to 1

The residential street in the Town of Miami Lakes is classified as Local Street - Residential. Our photometric design criteria used 0.4 fc which was also the recommended light level in the 2012 report.

Section 2.0 Roadway Illuminance Values and Issues

This section will discuss the findings from onsite audit and photometric analysis of the existing fixtures serving the residential areas of the Town of Miami Lakes. These fixtures were installed in 2017 as part of the Town's upgrade project which converted roadway lighting to LED fixtures.

2.1 Residential Roadway Fixture Types

There are four fixtures types used for roadway lighting in residential areas and these are presented in Table 2-1. Photographs of these fixtures are presented in Appendix A.

Table 2-1: Residential Roadway Lighting Fixtures

Fixture Type	Fixture Owner	Number of Fixtures	General Location	Typical Location
American Revolution 39-Watt 3000K	FPL	654	Zones 6, 7, and 8	14068 NW 88TH PI
RSW 45-Watt 3000K	FPL	188	Zone 6	14921 NW 89TH Ct
Evolve LED 32W Type B	ToML	396	Zones 1, 2, 3, 4, and 5	14598 Mahogany Ct
75W Screw-In Lamp	ToML	40	Zone 4	7246 Jacaranda Ln

2.2 Town Zone Numbers

The zone numbers used in this report refer to the map provided in Appendix B, which shows the Town of Miami Lakes divided in eight zones. This Map was developed as part of the Town of Miami Lakes Asset Identification System.

2.3 Street Trees and Their Impact on Roadway Lighting Conditions

The residential areas of the Town of Miami Lakes generally have a healthy and attractive tree canopy. As with cities throughout the country balancing the aesthetic appeal of street trees with their negative impact on street lighting is a difficult task. Wood found many areas where tree shadows reduced lighting uniformity and visibility on the sidewalks and streets. Examples of areas where light fixtures are blocked by trees are presented in Appendix A. Balancing the preservation of trees for environmental benefits and the removal/pruning of trees for traffic safety is a delicate process. Governing bodies, planners, and the public must work together to reach consensus when managing such a sensitive issue.

The photometric analysis, presented in Section 2.4, shows that even without the tree canopy the roadway light levels in the residential areas would be significantly below recommended light levels. However, in many areas the existing tree canopy would make it impossible to meet desired light levels even with lighting upgrades. Wood recommends that the Town work with residents and the company that provides tree maintenance to come up with a plan that will improve roadway light levels and maintain the aesthetic value of the town's tree canopy. A much more aggressive program of tree pruning is required to prevent excessive shadows and raise light levels.

Light levels were most impacted in Zones 1, 2, 3, and 4 where the tree canopy is more mature. The residential areas in these zones were generally served by post-arm fixtures which were sometime located above or in the tree canopy. The post-top fixtures that are prevalent in Zones 6, 7, and 8 are mounted on lower poles and more likely to be under the tree canopy. Wood recommends that measures taken to reduce shadows caused by the tree canopy start in Zones, 1, 2, 3, and 4.

2.4 Zones 6, 7, and 8 - American Revolution Pole-Top 39-watt Fixture

The American Revolution Pole-Top 398-watt fixture is the most common type of residential roadway fixture in the Town of Miami Lakes. This decorative pole-top fixture is present throughout Zones 7 and 8 , and located between NW 146rd St on North, Palmetto Frontage Rd on the East and South and NW 89 th Ave on the West in Zone 6. The area served by these fixtures is classified as Local Street-Residential and the desired sustained light level is 0.4 fc with a minimum average-to-minimum uniformity ration of six.

These fixtures are typically 130 to 160 feet apart. Light levels measurements in the field ranged from 2.6 fc to 0 fc . Over half of the distance between the fixtures had a measured light level of 0.0 fc . Photometrics for these fixtures prepared by Wood are presented in Appendix C. The photometrics show that even with without the presence of the tree canopy the light level between the fixtures drops to 0.0 fc and the average light level is 0.2 fc .

Shadow from trees are a problem in many areas served by these fixtures. The tree canopy seemed to cause the most problems with reduced light levels in Zone 8. In some areas the light pole position between the sidewalk and residences which greatly reduces light levels on the roadway.

2.5 Zone 6 - RSW Pole-Arm 45-watt Fixture

These pole-arm fixtures are located in between Miami Lakes Drive on the north, NW 87 Avenue on the east, NW $92^{\text {nd }}$ Avenue on the west, and to the south by NW 144 Terrace and $146^{\text {th }}$ Street in Zone 6 . The area served by these fixtures is classified as Local Street-Residential and the desired sustained light level is 0.4 fc with a minimum average-to-minimum uniformity ration of six.

These fixtures are typically 130 to 180 feet apart. Light levels measurements in the field ranged from 0.8 fc to 0.0 fc . Over half of the distance between the fixtures had a measured light level of 0.0 fc . Photometrics for these fixtures prepared by Wood are presented in Appendix C. The photometrics show that even with without the presence of the tree canopy the light level between the fixtures drops to 0.0 fc and the average light level is 0.3 fc .

The tree canopy in this area is less mature than other areas of the Town of Miami Lakes. Because these fixtures are on 30 - ft poles with pole-arm fixtures, the light level reduction caused by the tree canopy is limited in this area.

2.6 Zones 1 through 5 - Evolve Pole-Arm 32-watt Fixture

These pole-arm fixtures are the main residential light fixture serving Zones 1 through 5. The area served by these fixtures is classified as Local Street-Residential and the desired sustained light level is 0.4 fc with a minimum average-to-minimum uniformity ration of six.

These fixtures are typically 200 to 300 feet apart. Light levels measurements in the field ranged from 3.4 fc to 0.0 fc . Over half of the distance between the fixtures had a measured light level of 0.0 fc . Photometrics for these fixtures prepared by Wood are presented in Appendix C. The photometrics show that even with without the presence of the tree canopy the light level between the fixtures drops to 0.0 fc and the average light level is 0.1 fc .

The tree canopy if these zones is thick on often located beneath the fixtures. This is causing substantial shadowing and reduction of light levels.

2.7 Zone 4 - Pole-Top 75-watt Screw in Lamp

These post-top fixtures were retrofit with 75 -watt screw-in lamps as part of the 2017 LED lighting upgrades project. These fixtures are located in the northwest portion of Zone 4.

These fixtures are typically 200 to 250 feet apart. Light levels measurements in the field ranged from 1.6 fc to 0 fc . Most of the space between the fixtures had a measured light level of 0.0 fc . Photometrics for these fixtures prepared by Wood are presented in Appendix C. The photometrics show that even with without the presence of the tree canopy the light level between the fixtures drops to 0.0 fc and the average light level is 0.2 fc .

The tree canopy if the area served by these fixtures is thick on often located between the fixtures. This is causing substantial shadowing and reduction of light levels.

Section 3.0 Recommendations

Wood assessment of the residential roadway lighting in the Town of Miami Lakes identified problems with the tree canopy causing significant shadows on roadway and sidewalks, and light fixtures spaced too far apart to reach the recommended light level of 0.4 fc . The light levels in much of the space between fixtures drops to 0.0 fc either because existing fixtures are not strong enough, the poles are spaced too far apart, or because of shadows from the tree canopy.

Wood recommendations to address the problems identified in this report are as follow:

- Tree Canopy Maintenance: The first step the town should take is to greatly increase maintenance of the tree canopy with a concerted effort to reduce tree shadows reducing light from roadway fixtures. The town should include residents in the decision-making process to reduce public outcry regarding the increased pruning of tree canopy.
- Option 1: Install Additional Roadway Lighting: Wood did an analysis of the additional fixtures required to bring roadway light levels to the desired 0.4 fc (see Appendix D). Findings of this analysis include the following:
- For each of the four fixture types used for residential roadway lighting the town would need to install approximately twice as many fixtures. For aesthetic reasons, the new fixtures added in Wood's analysis are the same as the existing fixtures for each deficient area (see Appendix E: Cutsheets for details).
- The cost to install additional fixtures for all four fixture types is $\$ 3.2 \mathrm{M}$.
- The installation cost does not include energy usage of the new fixtures which would cost the town approximately $\$ 26 \mathrm{~K}$ per year (assuming a cost of $\$ 0.12$ per kWh). This option will increase energy usage associated with street lighting by approximately 100\%.
- The worst performing fixture used by the town is the 32-watt pole arm fixture in Zones 1, 2, 3, 4, and 5. It is recommended that fixture upgrades start in these Zones. The estimated costs associated with the recommended Option 1 upgrades in Zones $1-5$ is $\$ 1.3 \mathrm{M}$.
- Option 2: Replace Existing Fixtures with Higher Wattage Fixtures: Wood's analysis of replacing existing fixtures with high wattage fixtures brought light levels to within 10% of the desired light level of 0.4 fc (see Appendix D for details). Finding of this analysis include the following:
- For aesthetic reasons, the replacement fixtures used in Wood's analysis are higher wattage versions of the existing fixtures (see Appendix E: Cutsheets for details).
- The cost to replace existing fixtures with higher wattage fixtures for all four fixture types is estimated to be 1.0M.
- The installation cost does not include the additional energy usage of the new fixtures which would cost the town approximately $\$ 22 \mathrm{~K}$ per year (assuming a cost of $\$ 0.12$ per kWh). This option will increase energy usage associated with street lighting by approximately 85\%.
- The worst performing fixture used by the town is the 32 -watt pole arm fixture in Zones 1, $2,3,4$, and 5 . It is recommended that fixture upgrades start in these Zones. The estimated costs associated with the recommended Option 2 upgrades in Zones 1-5 is \$366K.

wood.

Appendix A Photographs

Photo 1: American Revolution 39-watt 3000K
Photo 3: RSW 45-watt 3000K

Photo 2: American Revolution 39-watt 3000K
Photo 4 RSW 45-watt 3000K

Photo 5: Evolve LED 32W Type B
Photo 7: 75-watt Screw-In LED Lamp

Photo 6: Evolve LED 32W Type B
Photo 8: Residential Street with Shadows from Trees

Photo 9: Roadway Fixture Located Behind Tree, Zone 7
Photo 11: Roadway Fixture Located Above Tree, Zone 3

Photo 10: Roadway Fixture Located Behind Tree, Zone 8
Photo 12: Roadway Fixture Located Behind Tree, Zone 2

wood.

Appendix B
 Zone Map

 \square

wood.

Appendix C Existing Photometric Modelling

NW 79TH AVE - American Revolution Pole-Top 39-watt Fixture

POLES 130-160 FT APART

Statistics
Description Symbol Avg Max Min Max/ Min Avg/ Min

NW 147TH TERRACE - RSW Pole-Arm 45-watt Fixture

POLES 130-180 FT APART

Designer
Date
9/18/2019
Sale
scale
ot to Scale Drawing No.

Summary
1 of 1

Bamboo St. - Evolve Pole-Arm 32-watt Fixture

POLES 200 FT APART

Statistics Description	Symbo	Max	Min	Max/ Min	vg/ Min	Avg
Calc Zone \#1	+	1.8 fc	0.0 fc	N/A	N/A	0.1

Big Cypress Drive Pole-Top 74-watt Screw in LED Lamp

POLES 200-250 FT APART

Statistics

Description Symbol Avg Max Min Max/ Min Avg/ Min | 10×10 | + | 0.2 fc | 1.5 fc | 0.0 fc | N/A | N/A |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

wood.

Appendix D
 Recommended Solutions

wood.

Option - 1
 Installation of Additional Fixtures

Town of Miami Lakes Residential Street Lighting

Location	ECM\#	Usage Area Type (Choose from Menu)	Pre-Retrofit Equipment			Proposed Action (Choosefrom Menu)	Post-Retrofit Equipment						
			Fixture Type (Choose from Menu)	\# of Fixtures	Ballast Code		Fixture Type (Choose from Menu)	\# of Fixtures	Ballast Code	Installed Total Cost Cost	Sum of Total Cost per Building	Sum of Peak kW Savings	Sum of Annual Energy Savings (kWh)
Existing LED Street Lighting													
American Revolution 39-Watt 3000K	L-01	Night	LED	654	LED PT AR 39w	DND	LED	654	LED PT AR 39w	\$			
RSW 45-Watt 3000K	L-01	Night	LED	188	LED-PA RSW 45w	DND	LED	188	LED-PA RSW 45w	\$			
Evolve LED 32W Type B	L-01	Night	LED	396	LED-PA 32w	DND	LED	396	LED-PA 32w	\$			
75W Screw-In Lamp	L-01	Night	LED	40	LED-PT 75w Scrw	DND	LED	40	LED-PT 75w Scrw	\$			
Proposed LED Street Lighting													
American Revolution 39-Watt 3000k	L-01	Night	LED		LED PT AR 39w	Install 1L Fixture	LED	654	LED PT AR 39w	\$ 1,468,230			
RSW 45-Watt 3000k	L-01	Night	LED		LED-PA RSW 45w	Install 1L Fixture	LED	188	LED-PA RSW 45w	\$ 510,420			
Evolve LED 32W Type B	L-01	Night	LED		LED-PA 32w	Install 1L Fixture	LED	396	LED-PA 32w	\$ 1,168,200			
75W Screw-In Lamp	L-01	Night	LED		LED-PT 75w Scrw	Install 1L Fixture	LED	40	LED-PT 75w Scrw	\$ 88,000			
				1,278				2,556			\$3,234,850	-49.64	-217,414
				$\begin{gathered} \text { \# of } \\ \text { Fixtures } \end{gathered}$				$\begin{gathered} \text { \# of } \\ \text { Fixtures } \end{gathered}$			Sum of Total Cost per Building	Sum of Peak kW Savings	Sum of Annual Energy Savings (kWh)

NW 79TH - AMERICAN REVOLUTION POLE-TOP 39-WATT FIXTURE

LEGEND

E = EXISTING FIXTURES
$\mathrm{N}=\mathrm{NEW}$ FIXTURES

NOTE: POLES 130-160 FT APART

Statistics						
Description	Symbol	Avg	Max	Min	Max/ Min	Avg/ Min
Calc Zone \#3	+	0.4 fc	1.1 fc	0.1 fc	$11.0: 1$	$4.0: 1$

[^0]
LEGEND

E = EXISTING FIXTURES
N = NEWLY ADDED
IXTURES

NOTE: POLES 130-180FT APART

Statistics						
Description	Symbol	Avg	Max	Min	Max/ Min	Avg/ Min
Calc Zone	+	0.5 fc	1.1 fc	0.1 fc	11.0:1	5.0:1

$E^{0.7}$ $]^{0.20 .10} \frac{10}{E}$

E: EXISTING FIXTURE

N: NEW FIXTURE

POLES 200 FT APAR

STATISTICS						
Description	Symbol	Avg	Max	Min	Max/Min	Avg/Min
Calc Zone \#4	+	0.4 fc	4.3 fc	0.1 fc	$43.0: 1$	$4.0: 1$

Scale
Not to Scale
Drawing No.

1 of 1

wood.

Option - 2

Replacement of Existing Fixtures

Lighting Calculation for:							\$0.1200	per kWh E	gy Cost				
Town of Miami Lakes Residential Street Lighting- Option 2													
Location	ECM\#	Usage Area Type (Choose from Menu)	Pre-Retrofit Equipment			Proposed Action (Choose from Menu)	Post-Retrofit Equipment						
			Fixture Type (Choose from Menu)	\# of Fixtures	Ballast Code		Fixture Type (Choose from Menu)	\# of Fixtures	Ballast Code	Installed Total Cost	Sum of Total Cost per Building	Sum of Peak kW Savings	Sum of Annual Energy Savings (kWh)
Existing LED Street Lighting													
American Revolution 39-Watt 3000K	L-01	Night	LED	654	LED PT AR 39w	Replace 1L Fixture	LED	654	LED PT AR 78w	\$ 474,150			
RSW 45-Watt 3000K	L-01	Night	LED	188	LED-PA RSW 45 w	Replace 1L Fixture	LED	188	LED PT AR 78w	\$ 136,300			
Evolve LED 32W Type B	L-01	Night	LED	396	LED-PA 32w	Replace 1L Fixture	LED	396	LED-PA 52w	\$ 366,300			
75W Screw-In Lamp	L-01	Night	LED	40	LED-PT 75w Scrw	Replace 1L Fixture	LED	40	LED PT AR 125w	\$ 35,000			
				1,278				1,278			\$1,011,750	-41.63	-182,339
				$\begin{array}{\|c} \begin{array}{c} \text { \# of } \\ \text { Fixtures } \end{array} \end{array}$				$\begin{array}{\|c} \begin{array}{c} \# \text { of } \\ \text { Fixtures } \end{array} \end{array}$			Sum of Total Cost per Building	Sum of Peak kW Savings	Sum of Annual Energy Savings (kWh)

Wood PLC - Zone 6, 7 and 8 pole-top LED Fixtures AcroBrwEx 247L

Page 1of 4

Calculation Summary	CalcType						
Label	Units	Avg	Max	Min	Avg/Min	MaxMin	
Object_2_Top_1	Illuminance	Fc	$\mathbf{0 . 3 9}$	$\mathbf{0 . 6}$	$\mathbf{0 . 2}$	$\mathbf{2 . 0}$	3.0

AREA LAYOUT

OrIOf

Wood PLC. - Zone 6, 7 and 8 pole-top LED Fixxures 247L_P55

RENDERING

OrIOn
Wood PLC, - Zone 6,7 and 8 pole-top LED Fixtures 247L_P55 ${ }_{\substack{\text { P12 } 129218 \\ \text { Miani Lakes }}}^{\substack{2 \\ \hline}}$

2. Fill verincation

CODES.

6. DEENTITON OF TERMS

ILUMMNMCE IS TUE TOTAL LUMMNOUS FLUX NMCIDNT ONA AUBFACE, PER UNT AREA

ELUCTUATIONS,

REELECTANCE
THE BATOO OF

SPEC SHEETS
"This is the main fixture for the residential areas in Zones 1, 2, 3, 4 and 5

Luminaire Schedule
Symbol Oty
Label
RRL1_06A340

-347-480V | LLF | Description |
| :--- | :--- |
| $\mathbf{0 . 7 0 0}$ | ERL1_06A340 |

$-347-480 \mathrm{~V}$
${ }_{52}$ Lum. Watts Arr.Lum. Lumens
6000

Calculation Summary
Label
Label ${ }^{\text {Object_3_Top_1 }}$

| Units |
| :--- | :--- |
| Fc |

Avg	Max	Min	Avg/Min	MaxMin	FC Requirements 0.37 1.6
0.0	N.A.	N.A.	50 FC		

RENDERING

2No

 OrIOrn

```
M.DESCRPTIONOF PHOTOMERIC DRAWNG.
M,
\)
MAXMUM AND MNMUM FOOT-CANOLE REEONNGSS RER AREA.
```



```
M,
M,
```



```
M, PERMTTNG
COOES.
```



```
\)
M,
```



```
M,
6. Defmiton Of terms
```



```
M,
MuINARE EFFCIENCY
M,
M,
MLLUMMNANCE IS THE TOTAL LUMMNOUS FUUX NCIDNT ONA SURFACE, PER UNT AREA
```



```
M,
Fluctuations,
M,
M
*)
M,
REFLECTANE
N
```


Appendix E Cutsheets

Evolve"' LED Roadway Lighting

LED Roadway Luminaire (ERL1-ERLH-ERS1-ERS2)

current
powered by GE

Product Features

The Evolve ${ }^{\text {TM }}$ LED Roadway Luminaire is optimized for customers requiring a LED solution for local, collector and major roadways. GE's unique reflective optics are designed to optimize application efficiency and minimize glare. The modern design incorporates the heat sink directly into the unit for heat transfer to prolong LED life. This reliable unit has a 100,000 hour design life, significantly reducing maintenance needs and expense over the life of the fixture. This efficient solution lowers energy consumption compared to traditional HID fixture for additional operating cost savings.

Applications

- Designed to meet recommended luminance and illuminance requirements for local, collector and major roadway/street classifications.

Housing

- The modern design incorporates Casting-integral heatsink for maximum heat transfer.
- Meets 3G vibration per ANSI C136.31-2010.
- Die Cast Enclosure.

LED \& Optical Assembly

- Evolve ${ }^{T M}$ light engine consisting of reflective technology designed to optimize application efficiency and minimize glare.
- Utilizes high brightness LEDs, 70 CRI at 3000 K and 4000 K typical.
- LM-79 tests and reports in accordance with IESNA standards.

Lumen Maintenance

- Lumen Maintenance per TM21.

Ratings

- (TL)/c(1) listed, suitable for wet locations per UL 1598.
- Std. Optical enclosure rated per ANSI C136.25-2009: ERL1 = IP65, ERS1-2 = IP66, ERLH = IP65.
- Upward Light Output Ratio $($ ULOR $)=0$.
- Compliant with the material restriction requirements of RoHS.
- 3000k must be selected to meet IDA certification and approval ERL1 and ERLH only.

Product ID	Lumen Output	Ambient Rating
ERL1	$02-09$	$-40^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
ERLH	$10-11$	$-40^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
ERLH	$13-15$	$-40^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$
ERS1	$10-15$	$-40^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
ERS2	$16-23$	$-40^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
ERS2	$25-28$	$-40^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$

Delayed start may be experienced $<-35^{\circ} \mathrm{C}$.

Mounting

- Slipfitter with +/- 5 degree of adjustment for leveling.
- Integral die cast mounting pipe stop.
- Adjustable for 1.25 in. or 2 in. mounting pipe.

Finish

- Corrosion resistant polyester powder paint, minimum 2.0 mil. thickness.
- Standard colors: Black, Gray and Dark Bronze.
- RAL \& custom colors available.
- Optional coastal finish available.

Electrical

- 120-277 VAC and 347-480 VAC.
- System power factor is $>90 \%$ and THD $<20 \%$.*
- Class "A" Sound rating.
- 0-10V dimming standard or DALI dimming available upon request for 120V-277V.
- Surge Protection per ANSI C136.2-2015:
- Standard: 6kV/3kA "Basic: (120 Strikes)"
- Optional Secondary: 10kV/5kA "Enhanced: (40 Strikes)"
- EMI: Title 47 CFR Part 15 Class A
- Photo electric sensors (PE) available.
* System power factor and THD is tested and specified at 120 V input and maximum load conditions. THD<26\% for 347/480V supply with 03 power level.

Warranty

- 5 Year Standard
- 10 Year Optional

Suggested HID Replacement Lumen Levels

- ~4,000-5,000 lumens to replace 100W HPS Cobra-head
- ~7,000-8,800 lumens to replace 150W HPS Cobra-head
- ~8,500-11,500 lumens to replace 200W HPS Cobra-head
- ~11,500-14,000 lumens to replace 250W HPS Cobra-head
- ~21,000-28,000 lumens to replace 400W HPS Cobra-head

Note: Actual replacement lumens may vary based upon mounting height, pole spacing, design criteria, etc.

ERL1

Photometrics

Evolve ${ }^{\text {TM }}$ LED Streetlight (ERL1)

ERL1
Extra Narrow Asymmetric 08A1)

```
8,200 Lumens
4000K
ERL1_08A140
```

\qquad

``` IES
```


Grid Distance in Units of Mounting Height at 30 ' Initia Footcandle Values at Grade

ERL1
Narrow Asymmetric Medium 08B1)

8,300 Lumens
4000K
ERL1_08B140 \qquad IES

Grid Distance in Units of Mounting Height at 30' Initial Footcandle Values at Grade

ERL1

Asymmetric Short
(08C1)

8,500 Lumens
4000K
ERL1_08C140 \qquad IES

Grid Distance in Units of Mounting Height at 30' Initial Footcandle Values at Grade

Grid Distance in Units of Mounting Height at 30^{\prime} Initia Footcandle Values at Grade

- Vertical plane through horizontal angle of maximum candlepower at 85°
- Vertical plane through horizontal angle of 70°

- Vertical plane through horizontal angle of maximum candlepower at 80°
- Vertical plane through horizontal angle of 68°

- Vertical plane through horizontal angle of maximum candlepower at 15°
- Vertical plane through horizontal angle of 42°

- Vertical plane through horizontal angle of maximum candlepower at 15°
- Vertical plane through horizontal angle of 42°

Street Width/Mounting Height

Street Width/Mounting Height

Street Width/Mounting Height

Street Width/Mounting Height

Photometrics

Evolve ${ }^{\text {TM }}$ LED Streetlight (ERL1)

ERL1
Asymmetric Medium (08E1)

8,500 Lumens 4000K
ERL1_08E140
\qquad IES

HS

Grid Distance in Units of Mounting Height at 30 ' Initial Footcandle Values at Grade

Grid Distance in Units of Mounting Height at 30' Initial Footcandle Values at Grade

Grid Distance in Units of Mounting Height at 30^{\prime} Initial Footcandle Values at Grade

- Vertical plane through horizontal angle of maximum candlepower at 80°
- Vertical plane through horizontal angle of 69°

- Vertical plane through horizontal angle of maximum candlepower at 60°
- Vertical plane through horizontal angle of 73°

Street Width/Mounting Height

SS

Street Width/Mounting Height

Street Width/Mounting Height

ERL1
Asymmetric Extra Wide (08G1)

8,500 Lumens
4000K
ERL1_08G140 \qquad IES

Ordering Number Logic

Evolve ${ }^{\text {TM }}$ LED Streetlight (ERLH)

ERLH

Ordering Number Logic

ERS 1

Photometrics

Evolve ${ }^{\text {TM }}$ LED Streetlight (ERLH and ERS1)

ERLH and ERS1
Extra Narrow Asymmetric (15A1)

14,200 Lumens 4000K

ERLH and ERS1
Narrow Asymmetric (Medium) (15B1)

14,700 Lumens 4000K

ERLH and ERS1 Asymmetric Short (15C1)

15,000 Lumens 4000K

ERLH and ERS1
Asymmetric Forward (15D1)

14,700 Lumens

 4000K

Grid Distance in Units of
ounting Height at 30^{\prime} Initia
Grid Distance in Units of
Mounting Height at 30^{\prime} Initial Footcandle Values at Grade

Grid Distance in Units of Mounting Height at 30 ' Initial Footcandle Values at Grade

Grid Distance in Units of Mounting Height at 30^{\prime} Initial Footcandle Values at Grade

Grid Distance in Units of Mounting Height at 30^{\prime} Initial Footcandle Values at Grade

- Vertical plane through horizontal angle of maximum candlepower at 85°
- Vertical plane through horizontal angle of 71°

- Vertical plane through horizontal angle of maximum candlepower at 85°
- Vertical plane through horizontal angle of 71°

- Vertical plane through horizontal angle of maximum candlepower at 0°
- Vertical plane through horizontal angle of 38°

- Vertical plane through horizontal angle of maximum candlepower at 5°
- Vertical plane through horizontal angle of 41°

Street Width/Mounting Height

Street Width/Mounting Height

Street Width/Mounting Height

Street Width/Mounting Height

Photometrics

Evolve ${ }^{\text {TM }}$ LED Streetlight (ERLH and ERS1)

ERLH and ERS1
Asymmetric Medium |15E1)

15,000 Lumens 4000K

ERLH and ERS1
Asymmetric Wide
(15F1)
15,000 Lumens 4000K

ERLH and ERS1

Asymmetric Extra Wide (15G1)

15,000 Lumens 4000K

Grid Distance in Units of Mounting Height at 30 ' Initial Footcandle Values at Grade

Grid Distance in Units of Mounting Height at 30' Initial Footcandle Values at Grade

Grid Distance in Units of Mounting Height at 30 ' Initial Footcandle Values at Grade

- Vertical plane through horizontal angle of maximum candlepower at 75°
- Vertical plane through horizontal angle of 70°

- Vertical plane through horizontal angle of maximum candlepower at 60°
- Vertical plane through horizontal angle of 75°

- Vertical plane through horizontal angle of maximum candlepower at 75°
- Vertical plane through horizontal angle of 68°

Street Width/Mounting Height

Street Width/Mounting Height

Street Width/Mounting Height

Ordering Number Logic

Evolve ${ }^{\text {TM }}$ LED Streetlight (ERS2)

ERS 2

PROD. ID	VOLTAGE	LUMEN OUTPUT	DISTRIBUTION	DRIVE CURRENT	CCT	CONTROLS	COLOR	OPTIONS
$\begin{aligned} & \mathrm{E}=\text { Evolve } \\ & \mathrm{R}=\text { Roadway } \\ & \mathrm{S}=\text { Scalable } \\ & 2=\text { Double } \\ & \text { Module } \end{aligned}$	$\begin{aligned} & 0=120-277^{*} \\ & 1=120 \\ & 2=208 \\ & 3=240 \\ & 4=277 \\ & 5=480 \\ & D=347 \\ & H=347-480^{*} \end{aligned}$ * Not available with Fusing. Must choose a descreet voltage with F option.	16 18 19 21 23 25 27 28 See Data Table for more information.	A1 = Extra Narrow Asymmetric B1 $=$ Narrow Asymmetric (Medium) C1 $=$ Asymmetric (Short) D1 =Asymmetric Forward E1 $=$ Asymmetric (Medium) F1 $=$ Asymmetric (Wide) G1 = Asymmetric (Extra Wide) See Data Table for	$X=\underset{\text { Applicable }}{\text { Not }}$	$\left[\begin{array}{l} 30=3000 \mathrm{~K} \\ 40=4000 \mathrm{~K} \end{array}\right.$	A = ANSI C136.41 7-pin D = ANSI C136.41 7-pin receptacle with Shorting Cap E = ANSI C136.41 7-pin Receptacle with nonDimming PE Control.* * PE Control Only available for 120-277V or 480V Discrete Not available for 347-480V or 347V Discrete. NOTE: Dimming controls wir for 0-10V standard unless DA option "U" requested.	$\begin{aligned} \text { GRAY } & =\text { Gray } \\ \text { BLCK } & \text { Black } \\ \text { DKBZ } & =\text { Dark } \\ & \text { Bronze } \end{aligned}$	A $=4$ Bolt Slipfitter \dagger F = Fusing G = Internal Bubble Level L = Tool-Less Entry R = Optional Secondary Enhanced Surge Protection (10kV/5kA) $\mathrm{T}=20 \mathrm{kV} / 10 \mathrm{kA}$ Surge Protection per IEEE/ANSI C62.41.2-2002 † $\mathrm{U}=$ Universal DALI Programmable $+^{\wedge}$ $Y=$ Coastal Finish* XXX = Special Options \dagger Contact manufacturer for Lead-Time. * Recommended for installations within 1 mile from the coast. Contact Factory for Lead-Time. + Compatible with LightGrid 2.0 nodes. \wedge Not available at $347 \mathrm{~V}, 480 \mathrm{~V}$ or $347-480 \mathrm{~V}$.

$\begin{aligned} & \text { PRODUCT } \\ & \text { ID } \end{aligned}$	LUMEN OUTPUT	DSTRIBUTION	TYPICAL INITIAL LUMENS		TYPICAL SYSTEM WATTAGE	BUG RATING		IES FILE NUMBER			
			4000K	3000K		4000K	3000K	4000K		3000 K	
ERS2	16	A1	15200	14700	132	B3-U0-G3	B3-U0-G3	ERS2_16A1140	. IES	ERS2_16A1X30	. IES
ERS2		B1	15700	15100		B3-U0-G2	B3-U0-G2	ERS2_1681×40	IES	ERS2_16B1×30	IES
ERS2		C1	16000	15400		B3-U0-G2	B3-U0-G2	ERS2_16C1×40	.IES	ERS2_16C1×30	IES
ERS2		D1	15700	15100		B3-U0-G2	B3-U0-G2	ERS2_1601X40	IES	ERS2_1601×30	. IES
ERS2		E1	16000	15400		B3-U0-G2	B3-U0-G2	ERS2_16E1X40	.IES	ERS2_16E1×30	.IES
ERS2		F1	16000	15400		B3-U0-G2	B3-U0-G2	ERS2_16F1X40	.IES	ERS2_16F1×30	IES
ERS2		G1	16000	15400		B3-U0-G2	B3-U0-G2	ERS2_16G1440	IES	ERS2_16G1×30	. IES
ERS2	18	A1	17100	16500	157	B3-U0-G3	B3-U0-G3	ERS2_18A1X40	. IES	ERS2_18A1X30	.IES
ERS2		B1	17600	17000		B3-U0-G2	B3-U0-G2	ERS2_1881×40	. IES	ERS2_18B1X30	.IES
ERS2		C1	18000	17400		B3-U0-G2	B3-00-G2	ERS2_18C1140	IES	ERS2_18C1X30	IES
ERS2		D1	17600	17000		B3-U0-G2	B3-U0-G2	ERS2_1801X40	IES	ERS2_1801×30	IES
ERS2		E1	18000	17400		B3-U0-G2	B3-U0-G2	ERS2_18E1×40	IES	ERS2_18E1×30	IES
ERS2		F1	18000	17400		B3-U0-G3	B3-U0-G2	ERS2_18F1X40	.IES	ERS2_18F1X30	IES
ERS2		61	18000	17400		B3-U0-G2	B3-U0-G2	ERS2_18G1X40	IES	ERS2_18G1×30	. IES
ERS2	19	A1	18000	17300	162	B3-U0-G3	B3-U0-G3	ERS2_19A1×40	. IES	ERS2_19A1X30	.IES
ERS2		B1	18600	17900		B3-U0-G2	B3-U0-G2	ERS2_1981×40	IES	ERS2_1981×30	.IES
ERS2		C1	19000	18300		B3-U0-G2	B3-00-G2	ERS2_19C1X40	IES	ERS2_19C1330	IES
ERS2		D1	18600	17900		B3-U0-G2	B3-U0-G2	ERS2_1901X40	. IES	ERS2_1901×30	. IES
ERS2		E1	19000	18300		B3-U0-G2	B3-U0-G2	ERS2_19E1X40	. IES	ERS2_19E1430	.IES
ERS2		F1	19000	18300		B3-U0-G3	B3-U0-G3	ERS2_19F1X40	.IES	ERS2_19F1×30	IES
ERS2		G1	19000	18300		B3-U0-63	B3-U0-G2	ERS2_1961×40	IES	ERS2_19G1×30	. IES
ERS2	21	A1	20000	19300	193	B3-U0-63	B3-U0-G3	ERS2_21A1×40	. IES	ERS2_21A1×30	.IES
ERS2		B1	20600	19900		B3-U0-G2	B3-U0-G2	ERS2_2181×40	. IES	ERS2_21B1330	. IES
ERS2		C1	21000	20300		B3-U0-G2	B3-U0-G2	ERS2_21C1X40	IES	ERS2_21C1330	. IES
ERS2		D1	20600	19900		B3-U0-G2	B3-U0-G2	ERS2_2101×40	IES	ERS2_2101×30	IES
ERS2		E1	21000	20300		B3-U0-G2	B3-U0-G2	ERS2_2111×40	.IES	ERS2_21E1×30	.IES
ERS2		F1	21000	20300		B3-U0-G3	B3-U0-G3	ERS2_21F1X40	IES	ERS2_21F1X30	.IES
ERS2		G1	21000	20300		B3-U0-63	B3-00-63	ERS2_2161X40	. IES	ERS2_2161×30	. IES
ERS2	23	A1	21900	21100	219	B4-U0-G3	B3-U0-G3	ERS2_23A1X40	.IES	ERS2_23A1330	IES
ERS2		B1	22500	21700		B3-U0-G3	B3-U0-G2	ERS2_23B1×40	IIES	ERS2_23B1×30	IES
ERS2		C1	23000	22200		B3-U0-G2	B3-U0-G2	ERS2_23C1×40	IES	ERS2_23C1×30	.IES
ERS2		D1	22500	21700		B3-U0-G2	B3-U0-G2	ERS2 2301X40	IES	ERS2_2301×30	. IES
ERS2		E1	23000	22200		B3-U0-G2	B3-U0-G2	ERS2_23E1×40	.IES	ERS2_23E1×30	IES
ERS2		F1	23000	22200		B3-U0-63	B3-U0-G3	ERS223F1X40	.IES	ERS2_23F1×30	.IES
ERS2		61	23000	22200		B3-U0-63	B3-U0-G3	ERS22361×40	IES	ERS2_2361×30	.IES
ERS2	25	A1	23800	23000	243	B4-U0-G3	B4-U0-G3	ERS2_25A1X40	.IES	ERS2_25A1X30	.IES
ERS2		B1	24500	23600		B4-U0-G3	B3-U0-G3	ERS2_2581×40	. IES	ERS2_25B1330	. IES
ERS2		C1	25000	24100		B3-U0-G2	B3-U0-G2	ERS2_25C1×40	.IES	ERS2_25C1×30	IES
ERS2		D1	24500	23600		B3-U0-G3	B3-U0-G3	ERS2_2501X40	IES	ERS2_2501×30	. IES
ERS2		E1	25000	24100		B3-U0-G3	B3-U0-G3	ERS2_25E1×40	.IES	ERS2_25E1×30	.IES
ERS2		F1	25000	24100		B3-U0-63	B3-U0-G3	ERS2_25F1X40	.IES	ERS2_25F1×30	.IES
ERS2		G1	25000	24100		B3-U0-63	B3-U0-63	ERS2_2561X40	. IES	ERS2_2561×30	. IES
ERS2	27	A1	25700	24800	275	B4-U0-63	B4-U0-G3	ERS2_27A1×40	. IES	ERS2_27A1X30	.IES
ERS2		B1	26500	25600		B4-U0-G3	B4-U0-G3	ERS2_2781×40	.IES	ERS2_27B1×30	.IES
ERS2		C1	27000	26000		B4-U0-G3	B4-U0-G3	ERS2_27C1×40	. IES	ERS2_27C1330	IES
ERS2		D1	26500	25600		B3-U0-63	B3-U0-G3	ERS2_2701X40	. IES	ERS2_2701×30	. IES
ERS2		E1	27000	26000		B4-U0-G3	B4-U0-G3	ERS2_27E1×40	.IES	ERS2_27E1×30	IES
ERS2		F1	27000	26000		B4-U0-G4	B4-U0-G3	ERS2_27F1×40	.IES	ERS2_27F1×30	.IES
ERS2		G1	27000	26000		B4-U0-G3	B4-U0-G3	ERS2_2761140	. IES	ERS2_2761×30	. IES
ERS2	28	A1	26600	25600	280	B4-U0-G3	B4-U0-G3	ERS2_28A1X40	. IES	ERS2_28A1330	.IES
ERS2		B1	27400	26400		B4-U0-G3	B4-U0-G3	ERS2_2881×40	IES	ERS2_28B1330	. IES
ERS2		C1	28000	26900		B4-U0-G3	B4-U0-G3	ERS2_28C1X40	.IES	ERS2_28C1330	IIES
ERS2		D1	27400	26400		B3-U0-G3	B3-U0-G3	ERS22801140	IES	ERS2_2801×30	. IES
ERS2		E1	28000	26900		B4-U0-G3	B4-U0-63	ERS2_28E1X40	.IES	ERS2_28E1×30	.IES
ERS2		F1	28000	26900		B4-U0-G4	B4-U0-G3	ERS2_28F1X40	. IES	ERS2_28F1×30	.IES
ERS2		G1	28000	26900		B4-U0-G4	B4-U0-G3	ERS2_2861×40	IES	ERS2_28G1×30	. IES

Photometrics

Evolve ${ }^{\text {TM }}$ LED Streetlight (ERS2)

ERS2
Extra Narrow Asymmetric (27A1)

25,700 Lumens 4000K
ERS2_27A1X40 \qquad .IES

Grid Distance in Units of Mounting Height at 30 ' Initia Footcandle Values at Grade

ERS2
Narrow Asymmetric (Medium) (27B1)

26,500 Lumens
4000K
ERS2_27B1X40 \qquad IES

Grid Distance in Units of Mounting Height at 30' Initial Footcandle Values at Grade

- Vertical plane through horizontal angle of maximum candlepower at 85°
- Vertical plane through horizontal angle of 71°

- Vertical plane through horizontal angle of maximum candlepower at 85°
- Vertical plane through horizontal angle of 71°

- Vertical plane through horizontal angle of maximum candlepower at 0°
- Vertical plane through horizontal angle of 38°

- Vertical plane through horizontal angle of maximum candlepower at 5°
- Vertical plane through horizontal angle of 41°

Street Width/Mounting Height

Street Width/Mounting Height

Street Width/Mounting Height

Street Width/Mounting Height

Photometrics

Evolve ${ }^{\text {TM }}$ LED Streetlight (ERS2)

ERS2
Asymmetric Medium
27E1)
27,000 Lumens
4000K
ERS2_27E1X40 \qquad IES

Grid Distance in Units of Mounting Height at 30 ' Initial Footcandle Values at Grade

Grid Distance in Units of Mounting Height at 30 ' Initial Footcandle Values at Grade

Grid Distance in Units of Mounting Height at 30^{\prime} Initial Footcandle Values at Grade

- Vertical plane through horizontal angle of maximum candlepower at 75°
- Vertical plane through horizontal angle of 70°

- Vertical plane through horizontal angle of maximum candlepower at 60°
- Vertical plane through horizontal angle of 75°

- Vertical plane through horizontal angle of maximum candlepower at 75°
- Vertical plane through horizontal angle of 68°

ERS2
Asymmetric Extra Wide (27G1)

27,000 Lumens
4000K
ERS2_27G1X40 \qquad .IES

Street Width/Mounting Height

Street Width/Mounting Height

Street Width/Mounting Height

Product Dimensions

Evolve ${ }^{\text {TM }}$ LED Streetlight (ERL1)

Product Dimensions

Evolve ${ }^{\text {TM }}$ LED Streetlight (ERLH)

Product Dimensions

Evolve ${ }^{\text {TM }}$ LED Streetlight (ERS1)

[^1]
Product Dimensions

Evolve ${ }^{\text {TM }}$ LED Streetlight (ERS2)

- Approximate net weight: 25 lbs (11.4 kgs) to 29 lbs (13.2 kgs)
- Effective Projected Area (EPA): 0.7 sq ft max (0.065 sq m)

www.currentbyge.com

All trademarks are the property of their respective owners. Information provided is subject to change without notice. All values are design or typical values when measured under laboratory conditions. Current, powered by GE is a business of the General Electric Company. © 2016 GE.

OLP3105 (Rev 09/21/16)

American Revolution LED
 Series 247L

PRODUCTOVERVIEW

Applications:

Streetscapes
Walkways
Pathways
Parks

Features:

- Die-cast aluminum housing and hood for long-life performance
- Die-cast trigger latch (TL) and captive thumb screws option available for easy access to internal components
- Optical assembly designed for maximum performance, available in Type II, Type III and Type V
- Hinged hood and captive thumb screws provision afford quick, easy access to electrical and optical area for servicing
- Slipfitter with three set screws allows secure installation to pole sizes 2-3/8" or 3" O.D.
- Surge protection device (standard) exceeds ANSI C62.41 Category C1 criteria (surge tested at $10 \mathrm{kV} / 5 \mathrm{kA}$)
- Complies with ANSI: C136.2, C136.10, C136.15
- CSA listed and suitable for up to $30^{\circ} \mathrm{C}$ ambient
- Rated L70, LED life greater than 100,000 hours at $25^{\circ} \mathrm{C}$
- Replaces up to 150W HPS light source incumbant models
- LED electronic OV-10V dimmable driver
- DesignLights Consortium ${ }^{\circledR}$ (DLC) qualified product. Not all versions of this product may be DLC qualified. Please check the DLC Qualified Products List at www.designlights.org/QPL to confirm which versions are qualified.

DIMENSIONS

Effective Projected Area (EPA)
The EPA for the American Revolution Series 247 is 1.6 sq. ft. P5 or P7 option total height is 24.9 (633). Approx. Wt. = 36 lbs .

Cupola height P3 without ROAM Shown in line diagram

Cupola height P5/P7 without ROAM

Cupola height P5/P7 with ROAM

American Revolution LED
 Series 247L

ORDERINGINFORMATION

Example: 247L 20LEDE70 MVOLT 4K R3 AY

247L American Revolution LED

	Performance Package
20LEDE10	20 Chips, 1050 mA Driver, 72 input watts
20LEDE70	20 Chips, 700 mA Driver, 45 input watts
10LEDE10	10 Chips, 1050 mA Driver, 38 input watts
10LEDE70	10 Chips, 700 mA Driver, 25 input watts
10LEDE53	10 Chips, 525 mA Driver, 18 input watts
10LEDE35	10 Chips, 350 mA Driver, 13 input watts

Voltage	
MVOLT	Multi-volt, 120-277V
347	347 V
480	480 V

R2 Type II
R3 Type III
R5 Type V

AY Acrylic
PY Polycarbonate

(blank)	Black (standard)
GY	Gray
DDB	Dark Bronze
WH	White

Photocontrol
(blank) 3 pin NEMA Photocontrol Receptacle (standard)
NR ${ }^{2} \quad$ No Photocontrol Receptacle
P5 ${ }^{3} \quad 5$ pin NEMA Photocontrol Receptacle (dimmable driver included)
P7 ${ }^{3} \quad 7$ pin NEMA Photocontrol Receptacle (dimmable driver included)
PCLL ${ }^{4,5}$ Solid State Long Life Photocontrol
PCSS ${ }^{4,5.6}$ Not CSA Listed Solid State Long Life Photocontrol (120-277V)

Cupola size based on type of control and receptacle

Notes:

1. Other colors available, please contact factory
2. PC and SH not available with NR option
3. Taller cupola cover (RCC) is required when used with ROAM or other similar wireless monitoring control systems
4. Standard failure mode="Fail On "
5. Photocontrols supplied with ANSI Standard Turn-On levels
6. XL option is required
7. Ships with unit, field installed
8. Required when using ROAM or other similar wireless monitoring control systems

American Revolution LED
 Series 247L

OPERATING CHARACTERISTICS

DesignLights Consortium ${ }^{\oplus}$ (DLC) qualified product. Not all versions of this product may be DLC qualified. Please check the DLC Qualified Products List at www.designlights.org/QPL to confirm which versions are qualified.

		TOTAL LUMENS											
LED Quantity, mA, CCT	Input Watts	R2-AY	LPW	R3-AY	LPW	R5-AY	LPW	R2-PY	LPW	R3-PY	LPW	R5-PY	LPW
20LEDE103K	73	5,495	75	5,553	76	6,068	83	5,156	71	5,210	71	5,694	78
20LEDE10 4K	73	5,900	81	5,962	82	6,516	89	5,451	75	5,576	76	6,111	84
20LEDE10 5K	73	5,937	81	5,999	82	6,556	90	5,568	76	5,626	77	6,149	84
20LEDE70 3K	46	4,103	89	4,147	90	4,531	99	3,848	84	3,889	85	4,249	92
20LEDE70 4K	46	4,407	96	4,453	97	4,867	106	4,115	89	4,164	91	4,545	99
20LEDE70 5K	46	4,434	96	4,481	97	4,897	106	4,140	90	4,184	91	4,573	99
10LEDE103K	39	2,936	75	2,967	76	3,242	83	2,779	71	2,808	72	3,068	79
10LEDE10 4K	39	3,153	81	3,187	82	3,482	89	2,959	76	2,990	77	3,267	84
10LEDE10 5K	39	3,173	81	3,206	82	3,504	90	2,981	76	3,011	77	3,292	84
10LEDE70 3K	26	2,115	81	2,137	82	2,336	90	2,012	77	2,034	78	2,223	86
10LEDE70 4K	26	2,271	87	2,295	88	2,508	96	2,106	81	2,128	82	2,326	89
10LEDE70 5K	26	2,285	88	2,309	89	2,523	97	2,126	82	2,148	83	2,347	90
10LEDE53 3K	19	1,662	87	1,681	88	1,836	97	1,561	82	1,578	83	1,724	91
10LEDE53 4K	19	1,785	94	1,804	95	1,972	104	1,670	88	1,688	89	1,845	97
10LEDE53 5K	19	1,796	95	1,816	96	1,984	104	1,683	89	1,702	90	1,859	98
10LEDE35 3K	14	1,150	82	1,162	83	1,270	91	1,079	77	1,090	78	1,191	85
10LEDE35 4K	14	1,234	88	1,248	89	1,364	97	1,162	83	1,175	84	1,284	92
10LEDE35 5K	14	1,243	89	1,256	90	1,372	98	1,165	83	1,177	84	1,287	92

RSW Series

RSW™ LED Street Luminaire - Small

Product Description

The Cree ${ }^{\circledR}$ RSW Series, utilizing WaveMax ${ }^{\circledR}$ Technology, will transform the way utilities and municipalities light their residential streets. With the first viable LED streetlight at warm CCT, the RSW Series delivers up to 127 LPW, enhanced visual comfort with reduced glare and high color contrast leading to improved overall illumination using less energy. The RSW Series provides warm, inviting dark sky friendly lighting that makes good economic sense.
Applications: Residential roads, collector roads, parking lots, and general area spaces

Performance Summary

Utilizes Cree WaveMax ${ }^{\circledR}$ Technology
Assembled in the U.S.A. of U.S. and imported parts

Limited Warranty ${ }^{\dagger}$: 10 years
See http://lighting.cree.com/warranty for warranty terms

Accessories

Field-Installed	
Backlight Control Shield	Cul-De-Sac Shield
RSW-BLSS	RSW-CLSS
- Provides 1 mounting height cutoff	- Provides backlight and sidelight control
$-0.5^{\prime \prime}(13 \mathrm{~mm}) 301$ stainless steel construction	$-0.5^{\prime \prime}(13 \mathrm{~mm}) 301$ stainless steel construction
- Refer to initial delivered lumen tables for lumen output	- Lumen multiplier: 0.77
Bird Guard	Front Light Shield
RSW-BRDGRDS	RSW-FLSS
$-5052-$ H32 aluminum construction	- Provides front light control
	$-0.5^{\prime \prime}(13 m m) 301$ stainless steel construction
	- Lumen multiplier: 0.87

Weight*
9.4 lbs. (4.3kg)
*RSW-BLSS, RSW-CLSS, or RSW-FLSS Accessories: add 0.4 lbs. (0.2 kg)

Ordering Information

Example: RSWS-A-HT-2ME-3L-27K8-UL-GY-N

RSWS	A	HT				UL		N	
Product	Version	Mounting	Optic	Lumen Package**	CCT/CRI	Voltage	Color Options	Utility Label/Receptacle	Options
RSWS Small	A	HT Horizontal Tenon	2LG* Type II Long 2ME* Type II Medium 3ME* Type III Medium	3L 3,000 lumens 5L 5,000 lumens	27K8 2700K, 80 CRI $30 K 7$ 3000K, 70 CRI 30K8 3000K, 80 CRI 40K7 4000K, 70CRI 40K8 4000K, 80 CRI 50K7 5000K, 70CRI 50K8 5000K, 80CRI	UL Universal 120-277V	BK Black BZ Bronze GY Grey	N Utility Label and NEMA ${ }^{\oplus}$ 7-Pin Photocell Receptacle - External wattage label per ANSI C136.15 - 7-pin receptacle per ANSI C136.41 - Factory connected 0-10V dim leads - Photocell or shorting cap by others	Q4/Q3/Q2/Q1 Field Adjustable Output - Must select Q4, Q3, Q2, or Q1 - Offers full range lumen adjustability - Includes wattage label for setting selected - Refer to pages 5 \& 6 for power and lumen values - Luminaire may also be dimmed through 7-Pin receptacle with use of dimming control by others - Refer to dimming spec sheet for dimming multipliers SS Stainless Steel Bolts X3/X2/X1 Locked Lumen Output - Must select X3, X2, or X1 - Lumen output is permanently locked to the setting selected - Includes wattage label for setting selected - Refer to pages 5 \& 6 for power and lumen values - Dimming is only available through 7-Pin receptacle with use of dimming control by others - Refer to dimming spec sheet for dimming multipliers

[^2]${ }^{* *}$ Lumen Package codes identify approximate light output only. Actual lumen output levels vary depending on CCT and optic selection. Refer to Initial Delivered Lumen tables for specific lumen values

Product Specifications

CREE WAVEMAX ${ }^{\ominus}$ TECHNOLOGY

Featuring up to 90% optical efficiency and precise control, Cree WaveMax ${ }^{\circledR}$ Technology provides unmatched comfort and decreased LED source luminance by smoothly spreading brightness over a broader area. When integrated with luminous surfaces made of a polymer medium engineered with DiamondFacet ${ }^{\text {TM }}$ optical elements, extremely high efficacy luminaires are the result - ultimately creating more visually comfortable and appealing environments while exceeding illumination performance

CONSTRUCTION \& MATERIALS

- Housing constructed of high strength, lightweight bulk molding compound for long weathering and durability
- UV stabilized polymeric door with handle pocket for tool-less entry
- Straight in wiring to terminal block for power input (\#6-\#14 AWG)
- Optic box and driver enclosure inside optic box meet IP66 requirements
- Mounts on $1.25^{\prime \prime}(32 \mathrm{~mm})$ IP, $1.66^{\prime \prime}(42 \mathrm{~mm})$ 0.D. or 2 " (51 mm) IP, 2.375" $(60 \mathrm{~mm})$ O.D. horizontal tenon (minimum 8" [203mm] in length) and is adjustable $+/-5^{\circ}$ in 2.5° increments to allow for fixture leveling (two axis T-level included)
- Luminaire secures with two grade 5 steel mounting bolts w/clear zinc clad finish standard; optional 316 stainless steel mounting bolts available with SS option
- Comes standard with Utility Label per ANSI C136.15 and 7-pin NEMA ${ }^{\oplus}$ Photocell Receptacle per ANSI C136.41
- Weight: 9.4 lbs. (4.3 kg); add 0.4 lbs. (0.2 kg) for RSW-BLSS, RSW-CLSS, or RSW-FLSS accessories

ELECTRICAL SYSTEM

- Input Voltage: $120-277 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
- Power Factor: > 0.9 at full load
- Total Harmonic Distortion: < 20\% at full load
- Integral 10 kV surge suppression protection standard
- When code dictates fusing, a slow blow fuse or type C/D breaker should be used to address inrush current
- 10V Source Current: 0.15 mA
- Operating Temperature Range: $-40^{\circ} \mathrm{C}-+50^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}-+122^{\circ} \mathrm{F}\right)$

REGULATORY \& VOLUNTARY QUALIFICATIONS

- cULus Listed
- Suitable for wet locations
- Certified to ANSI C136.31-2001, 3G bridge and overpass vibration standards
- Meets CALTrans 611 Vibration testing
- 10 kV surge suppression protection tested in accordance with IEEE/ANSI C62.41.2
- Meets FCC Part 15, Subpart B, Class A standards for conducted and radiated emissions
- Meets Buy American requirements within ARRA
- RoHS compliant. Consult factory for additional details
- Dark Sky Friendly, IDA Approved when ordered with 27K or 30K CCT
- DLC and DLC Premium qualified versions available. Please refer to https://www.designlights.org/search/ for most current information
- CA RESIDENTS WARNING: Cancer and Reproductive Harm -
www.p65warnings.ca.gov

Electrical Data*								
Lumen Package	CCT/CRI	System Watts 120-277V	Utility Label Wattage	Efficacy	Total Current (A)			
					120V	208V	240V	277V
3L	27K8	32	30	103	0.27	0.16	0.14	0.13
	30k7	28	30	118	0.23	0.14	0.12	0.11
	30k8	31	30	106	0.25	0.15	0.13	0.12
	40K7	26	30	127	0.21	0.13	0.11	0.10
	40K8	29	30	114	0.24	0.14	0.13	0.11
	$50 \mathrm{K7}$	26	30	127	0.21	0.13	0.11	0.10
	50k8	28	30	118	0.23	0.14	0.12	0.11
5L	27K8	53	50	94	0.44	0.26	0.23	0.20
	30K7	45	50	111	0.37	0.22	0.20	0.18
	30k8	51	50	98	0.42	0.25	0.22	0.20
	40K7	41	40	122	0.34	0.20	0.18	0.16
	40k8	47	50	106	0.39	0.23	0.20	0.18
	50k7	41	40	122	0.34	0.20	0.18	0.16
	50k8	45	50	111	0.37	0.22	0.20	0.18

Electrical data at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$. Actual wattage may differ by $+/-10 \%$ when operating between $120-277 \mathrm{~V}+/-10 \%$

RSWS Series Ambient Adjusted Lumen Maintenance¹					
Ambient	Initial LMF	$\begin{aligned} & 25 \mathrm{~K} \mathrm{hr} \\ & \text { Projected² } \\ & \text { LMF } \end{aligned}$	50 K hr Projected ${ }^{2}$ LMF	75K hr Projected ${ }^{2}$ LMF	100K hr Calculated ${ }^{3}$ LMF
$5^{\circ} \mathrm{C}\left(41^{\circ} \mathrm{F}\right)$	1.04	1.03	1.02	1.02	1.02
$10^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{F}\right)$	1.03	1.02	1.01	1.01	1.01
$15^{\circ} \mathrm{C}\left(59^{\circ} \mathrm{F}\right)$	1.02	1.01	1.00	1.00	1.00
$20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$	1.01	1.00	0.99	0.99	0.98
$25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$	1.00	0.98	0.98	0.98	0.97

'Lumen maintenance values at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ are calculated per TM-21 based on LM-80 data and in-situ luminaire testing. Luminaire ambient temperature factors (LATF) have been applied to all lumen maintenance factors. Please refer to the Temperature Zone Reference Document for outdoor average nighttime ambient conditions In accordance with IESNA TM-21-11, Projected Values represent interpolated value based on time durations that are within six times (6X) the IESNA LM-80-08 total test duration (in hours) for the device under testing (IDUT) i.e. the packaged LED chip)
In accordance with IESNA TM-21-11, Calculated Values represent time durations that exceed six times (6X) the IESNA LM-80-08 total test duration (in hours) for the device under testing ((DUT) i.e. the packaged LED chip)

Photometry

All published luminaire photometric testing performed to IESNA LM-79-08 standards. To obtain an IES file specific to your project consult: http://lighting.cree.com/products/outdoor/street-and-roadway/rsw-series

2LG

UL Verification Services Test Report \#:
11624878.01

RSWS-A-**-2LG-3L-30K7-UL-GY-N
Initial Delivered Lumens: 3,294

CESTL Test Report \#: 11675461.06 RSWS-A-**-2LG-3L-30K7-UL-GY-N w/RSW-BLSS
Initial Delivered Lumens: 3,080

2ME

UL Verification Services Test Report \#: 11644102.09

RSWS-A-**-2ME-3L-30K7-UL-GY-N Initial Delivered Lumens: 3,251

CESTL Test Report \#: 11675461.02 RSWS-A-**-2ME-3L-30K7-UL-GY-N w/RSW-BLSS
Initial Delivered Lumens: 2,975

RSWS-A-**-2LG-3L-30K7-UL-GY-N Mounting Height: $25^{\prime}(7.6 \mathrm{~m})$ A.F.G. Initial Delivered Lumens: 3,300 Initial FC at grade

RSWS-A-**-2LG-3L-30K7-UL-GY-N w/RSW-BLSS
Mounting Height: $25^{\prime}(7.6 \mathrm{~m})$ A.F.G.
Initial Delivered Lumens: 3,050
Initial FC at grade

RSWS-A-**-2ME-3L-30K7-UL-GY-N Mounting Height: $25^{\prime}(7.6 \mathrm{~m})$ A.F.G. Initial Delivered Lumens: 3,300 Initial FC at grade

RSWS-A-**-2ME-3L-30K7-UL-GY-N w/RSW-BLSS
Mounting Height: $25^{\prime}(7.6 \mathrm{~m})$ A.F.G Initial Delivered Lumens: 3,050 Initial FC at grade

Photometry

All published luminaire photometric testing performed to IESNA LM-79-08 standards. To obtain an IES file specific to your project consult: http://lighting.cree.com/products/outdoor/street-and-roadway/rsw-series

3ME

Type III Medium Distribution			
	Lumen Package	CRI	Initial Delivered Lumens*
3L		$3,300 \mathrm{~K} / 3000 \mathrm{~K} / 4000 \mathrm{~K} / 5000 \mathrm{~K}$	BUG Ratings** Per TM-15-11
5L	All	5,000	B1 U0 G1

* Initial delivered lumens at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$. Actual production yield may vary between -10 and $+10 \%$ of initial delivered lumens
** For more information on the IES BUG (Backlight-Uplight-Glare) Rating visit:
https://www.ies.org/wp-content/uploads/2017/03/TM-15-11BUGRatingsAddendum.pdf. Valid with no tilt

Type III Medium w/BLS Distribution			
Lumen Package	CRI	$2700 \mathrm{~K} / 3000 \mathrm{~K} / 4000 \mathrm{~K} / 5000 \mathrm{~K}$	
		Initial Delivered Lumens*	BUG Ratings* Per TM-15-11
	All	3,050	B1 U1 G1
5 L	All	4,630	B1 U1 G2

*Initial delivered lumens at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$. Actual production yield may vary between -10 and $+10 \%$ of initial delivered
lumens
JTignt-Glare) Rating vaddendum.pdf. Valid with no tilt

UL Verification Services Test Report \#: 11644102.08

RSWS-A-**-3ME-3L-30K7-UL-GY-N
Initial Delivered Lumens: 3,399

RSWS-A-**-3ME-3L-30K7-UL-GY-N Mounting Height: 25^{\prime} (7.6m) A.F.G. nitial Delivered L umens: 3,300 Initial FC at grade

RSWS-A-**-3ME-3L-30K7-UL-GY-N w/RSW-BLSS
Mounting Height: $25^{\prime}(7.6 \mathrm{~m})$ A.F.G Initial Delivered Lumens: 3,050 Initial FC at grade

CESTL Test Report \#: 11675461.01 RSWS-A-**-3ME-3L-30K7-UL-GY-N /RSW-BLSS
Initial Delivered Lumens: 3,113

Luminaire EPA

Horizontal Tenon Mount - Weight: 9.4 lbs. (4.3kg); RSW-BLSS, RSW-CLSS, or RSW-FLSS Accessories: add 0.4 lbs . (0.2kg)					4 a 90°
Luminaire	Single	2 29 90°	2 2 180°	3 2 90°	
Tenon Configuration If used with Cree tenons, please add tenon EPA with luminaire EPA					
	PD-1H4; PT-1H		PD-2H4(180); PT-2H(180)		
Standard Luminiare	0.61	0.89	1.22	1.50	1.78
Luminiare w/RSW-BLSS, RSW-CLSS or RSW-FLSS Accessory	0.61	1.25	1.22	1.85	2.49

Tenon EPA

Part Number	EPA
PD Series Tenons	0.09
PT Series Tenons	0.10
WM-2L	0.13
XA-TMDA8	0.19

Tenons and Brackets* (must specify color)	
Square Internal Mount Horizontal Tenons (Aluminum) - Mounts to $4^{\prime \prime}(102 \mathrm{~mm})$ square aluminum or steel poles PD-1H4 - Single PD-3H4(90) - 90° Triple PD-2H4(90) -90° Twin PD-4H4(90)-90 Quad PD-2H4(180)-180 ${ }^{\circ}$ Twin Wall Mount Brackets - Mounts to wall or roof WM-2L - Extended Horizontal	Round External Mount Horizontal Tenons (Aluminum) - Mounts to $2.375^{\prime \prime}-3^{\prime \prime}(60-76 \mathrm{~mm})$ O.D. round aluminum or steel poles or tenons PT-1H - Single PT-3H(90) -90° Triple PT-2H(90) - 90° Twin PT-4H(90) - 90° Quad PT-2H(180) - 180° Twin Direct Arm Pole Adaptor Bracket - Mounts to 3-6" ($76-152 \mathrm{~mm}$) round or square aluminum or steel poles XA-TMDA8

Field Adjustable Output (Q4/Q3/Q2/Q1) Option Description:

The Field Adjustable Output option enables the street and area luminaire within the RSW Series on this page to be tuned to the exact needs of a particular application through multiple levels of adjustment. When ordered with the Q option, the luminaire will be shipped from the factory at the selected lumen output, will be fully adjustable between the outputs, and will include a wattage label that indicates the wattage of the luminaire at the selected lumen output (Rounded to nearest 10 watts per ANSI C136.15-2015.). Additional dimming functionality is available when a dimming control (by others) is used in the 7-Pin receptacle.

Locked Lumen Output (X3/X2/X1) Option Description:

The Locked Lumen Output option on this page permanently locks the lumen output on the RSW Series street and area luminaire to the setting selected. When ordered with the X option, the luminaire will be shipped from the factory at the lumen output setting selected, and will include a wattage label that indicates the wattage of the setting selected. When this option is selected, the luminaire output is not able to be adjusted in the field except if a dimming control (by others) is used in the 7 -Pin receptacle.

Q \& X Option Power \& Lumen Data - 3L

Q Option Setting	X Option Setting	CCT/CRI	System Watts ${ }^{+}$	Label Wattage	Lumen Values ${ }^{+}$		Optics Qualified on DLC QPL	
			120-277V		$\begin{aligned} & \text { 2LG, 2ME \& } \\ & 3 \mathrm{ME} \end{aligned}$	w/BLS	Standard	Premium
Q4 (Full Power)	N/A (Full Power)	27K8	32	30	3,300	3,050	2LG, 2ME, 3ME	
		$30 \mathrm{K7}$	28	30				2LG, 2ME, 3ME
		30K8	31	30			2LG, 2ME, 3ME	
		40K7	26	30				2LG, 2ME, 3ME
		40K8	29	30				2LG, 2ME, 3ME
		$50 \mathrm{K7}$	26	30				2LG, 2ME, 3ME
		50K8	28	30				2LG, 2ME, 3ME
Q3	X3	27K8	26	30	2,756	2,547	2LG, 2ME, 3ME	
		$30 \mathrm{K7}$	23	20				2LG, 2ME, 3ME
		30 K 8	25	30			2LG, 2ME, 3ME	
		40K7	21	20				2LG, 2ME, 3ME
		40K8	23	20				2LG, 2ME, 3ME
		$50 \mathrm{K7}$	21	20				2LG, 2ME, 3ME
		50K8	23	20				2LG, 2ME, 3ME
Q2	X2	27K8	20	20	2,169	2,004	2LG, 2ME, 3ME	
		$30 \mathrm{K7}$	17	20				2LG, 2ME, 3ME
		30 K 8	19	20			2LG, 2ME, 3ME	
		$40 \mathrm{K7}$	16	20				2LG, 2ME, 3ME
		40K8	18	20				2LG, 2ME, 3ME
		$50 \mathrm{K7}$	16	20				2LG, 2ME, 3ME
		50K8	17	20				2LG, 2ME, 3ME
Q1	X1	27K8	15	20	1,633	1,509	2 LG (120V), 2ME (120V), 3ME (120V)	
		$30 \mathrm{K7}$	13	10				2LG (120V), 2ME (120V), 3ME (120V)
		$30 \mathrm{K8}$	15	20			2LG (120V), 2ME (120V), 3ME (120V)	
		40K7	12	10				2LG (120V), 2ME (120V), 3ME (120V)
		40K8	14	10				2LG (120V), 2ME (120V), 3ME (120V)
		50K7	12	10				2LG (120V), 2ME (120V), 3ME (120V)
		50K8	13	10				$2 \mathrm{LG}(120 \mathrm{~V}), 2 \mathrm{ME}(120 \mathrm{~V}), 3 \mathrm{ME}$ (120V)

[^3]
Field Adjustable Output (Q4/Q3/Q2/Q1) Option Description:

The Field Adjustable Output option enables the street and area luminaire within the RSW Series on this page to be tuned to the exact needs of a particular application through multiple levels of adjustment. When ordered with the Q option, the luminaire will be shipped from the factory at the selected lumen output, will be fully adjustable between the outputs, and will include a wattage label that indicates the wattage of the luminaire at the selected lumen output (Rounded to nearest 10 watts per ANSI C136.15-2015.). Additional dimming functionality is available when a dimming control (by others) is used in the 7-Pin receptacle.

Locked Lumen Output (X3/X2/X1) Option Description:

The Locked Lumen Output option on this page permanently locks the lumen output on the RSW Series street and area luminaire to the setting selected. When ordered with the X option, the luminaire will be shipped from the factory at the lumen output setting selected, and will include a wattage label that indicates the wattage of the setting selected. When this option is selected, the luminaire output is not able to be adjusted in the field except if a dimming control (by others) is used in the 7-Pin receptacle.

Q \& X Option Power \& Lumen Data - 5L

Q Option Setting	X Option Setting	CCT/CRI	System Watts ${ }^{\dagger}$	Label Wattage	Lumen Values ${ }^{+}$		Optics Qualified on DLC QPL	
			120-277V		$\begin{aligned} & \text { 2LG, 2ME \& } \\ & 3 \text { ME } \end{aligned}$	w/BLS	Standard	Premium
Q4 (Full Power)	N/A (Full Power)	27K8	53	50	5,000	4,630	2LG, 2ME, 3ME	
		30K7	45	50				2LG, 2ME, 3ME
		30K8	51	50			2LG, 2ME, 3ME	
		40K7	41	40				2LG, 2ME, 3ME
		40K8	47	50			2LG, 2ME, 3ME	
		50K7	41	40				2LG, 2ME, 3ME
		50K8	45	50			2LG, 2ME, 3ME	
Q3	X3	27K8	49	50	4,654	4,310	2LG, 2ME, 3ME	
		30K7	41	40				2LG, 2ME, 3ME
		30K8	46	50			2LG, 2ME, 3ME	
		40K7	38	40				2LG, 2ME, 3ME
		40K8	43	40			2LG, 2ME, 3ME	
		50K7	38	40				2LG, 2ME, 3ME
		50K8	41	40			2LG, 2ME, 3ME	
Q2	X2	27K8	42	40	4,105	3,801	2LG, 2ME, 3ME	
		30K7	36	40				2LG, 2ME, 3ME
		30K8	40	40			2LG, 2ME, 3ME	
		40K7	33	30				2LG, 2ME, 3ME
		40K8	38	40			2LG, 2ME, 3ME	
		50K7	33	30				2LG, 2ME, 3ME
		50K8	36	40				2LG, 2ME, 3ME
Q1	X1	27K8	36	40	3,617	3,350	2LG, 2ME, 3ME	
		$30 \mathrm{K7}$	30	30				2LG, 2ME, 3ME
		30K8	34	30			2LG, 2ME, 3ME	
		40K7	28	30				2LG, 2ME, 3ME
		40K8	32	30			2LG, 2ME, 3ME	
		$50 \mathrm{K7}$	28	30				2LG, 2ME, 3ME
		50K8	30	30				2LG, 2ME, 3ME

[^4]
480Vac Metal Halide : HPS 8OW LED Replacement Lamp

- Built-in Surge Suppressors \& Protection •
- Bright • High CRI • High Lumen Output•
- Suitable for Open \& Enclosed Fixtures \bullet
- High Power Factor • Self Ballasted •
- Rated Life 50,000 Hours ${ }^{(*)}$.

C
 LM79
 LM80
 TESTED

$$
208 V-277 V-347 V-480 V
$$

Available in:
CCT 5,500K $\mathbf{\pm 1 0 \%}$ (CW) for MH Replacement CCT $\mathbf{3 , 0 0 0 K} \pm 10 \%$ (WW) for HPS Replacement - Simple Installation • High Lumen per Watt • Rugged Design •

Simple Installation High Lumen per Watt Rugged Design

Mode	Product	Size	Power	Flux	Equivalent
CL-80W11H-55K-E39	LED Lamp 80W 360° 55K MH Replacement	$\varnothing 43 / 8 \times 7$	80W Max.	$\begin{aligned} & 11,000 \\ & \text { Lumen } \end{aligned}$	$\begin{aligned} & \text { 320W } \\ & \text { MH } \end{aligned}$
CL-80W11H-30K-E39	LED Lamp 80W 360° 30K HPS Replacement	$\varnothing 43 / 8 \times 7 \prime$	$\begin{aligned} & \text { 80W } \\ & \text { Max. } \end{aligned}$	$\begin{aligned} & \text { 10,100 } \\ & \text { Lumen } \end{aligned}$	$\begin{gathered} \text { 320W } \\ \text { HPS } \end{gathered}$

$\bullet 208-480 \mathrm{Vac} \sim 50 / 60 \mathrm{~Hz} \bullet$ PF > $0.9 \bullet$ Med. (E26) or Mogul (E39) Lamp Base • ~125 Im/W •CRI >75 • ${ }^{\bullet(*)}$ Rated Life $\mathbf{5 0 , 0 0 0} \mathrm{Hrs}$. $\left(\mathrm{L}_{70} \mathrm{~B}_{50}\right)$ at $\mathrm{T}_{[\mathrm{A}]} 25^{\circ} \mathrm{C}$ Max. \bullet CCT $5500 \mathrm{~K}(55 \mathrm{~K})$ or $3000 \mathrm{~K}(30 \mathrm{~K}) \pm 10 \% \bullet$
sow Cluster LED

Model	Product	Power

Cluster LED Bulb

Power/Power Factor

80W Max.
P.F. ≈ 0.97

Color Temperature
Beam Angle

80W
Efficacy
~135 Im/W
11,000 Lumen (CW) 10,100 Lumen (WW)

Color Rendering
CRI $\div 75^{\sim} \mathbf{8 0}$
30K \div CCT $3,000 K \pm 10 \%$
360°
$55 \mathrm{~K} \div$ CCT $5,500 \mathrm{~K} \pm 10 \%$

[^0]:

[^1]: - Approximate net weight: $20 \mathrm{lbs}(9.1 \mathrm{kgs})$ to $25 \mathrm{lbs}(11.4 \mathrm{kgs})$
 - Effective Projected Area (EPA): 0.5 sq ft max (0.046 sq m)

[^2]: * Available with Backlight Shield when ordered with field-installed accessory (see table above)

[^3]: ${ }^{\dagger}$ Electrical and lumen data at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$. Actual wattage and lumen output may differ by $+/-10 \%$ when operating between $120-277 \mathrm{~V}+/-10 \%$

[^4]: Electrical and lumen data at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$. Actual wattage and lumen output may differ by $+/-10 \%$ when operating between $120-277 \mathrm{~V}+/-10 \%$

